
Parameter Estimation:
Maximum Likelihood (ML),

Maximum a Posteriori (MAP),
and Bayesian Inference

Lecturer:
Jiří Matas

Authors:
Ondřej Drbohlav, Jiří Matas

Centre for Machine Perception
Czech Technical University, Prague

http://cmp.felk.cvut.cz
Lecture date: 17.10.2015
Last update: 18.10.2015



2/33
Probability Estimation

Both in the Bayesian Decision Theory and the Non-Bayesian Methods lectures, it has been
assumed that all the necessary probabilities (priors, conditionals) are known.

In practice, the probabilities almost always need to be estimated from the training data.
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Probability Distribution Estimation Methods (1/2)

According to the form of the model for the distribution:

� Parametric. The distribution has a known form of a function which has parameters
θ = (θ1, θ2, ..., θD). The number of parameters is low.
Example: the normal distribution N (x |µ, σ2): the parameters to be estimated are
θ = {µ, σ2}. The parameter space is two-dimensional.

� Non-parametric.: The same as with the Parametric models, but the number of
parameters to be estimated is very high. Note the apparent contradiction in the
terminology (high number of parameters to estimate → “non-parametric” method?).
This is because the term ’parameter’ often disappears from the estimating methods
procedure.
Example: K-nearest neighbors; Parzen window; histogram.

To be discussed: complexity of estimating e.g. mixtures:

p(x) =

D∑
i=1

πiN (µi, σ
2
i ) , (1)

or parameters of feed-forward neural nets.
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Probability Distribution Estimation Methods (2/2)

Learning principles:

� Maximum Likelihood

� Maximum A Posteriori

� Bayesian Inference
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Maximum Likelihood (ML) Principle

� The training set T is available, T = {(x1, k1), (x2, k2), ..., (xN , kN)}.
� The parametric form of the likelihood L(θ) = p(T |θ) is known.
� Note that the likelihood function L(θ) is a function of the parameters θ, for fixed
observations T . In particular, L(θ) does not sum up to 1.

ML principle
The maximum likelihood estimate θ̂ for the observed data T is defined as:

θ̂ = argmax
θ

L(θ) = argmax
θ

p(T |θ). (2)

The argument for this formulation is, informally, “if the parameters are correct then they will
give larger probabilities for the observations, compared to wrong parameters”.

Usually, the parameters for different classes are independent (no shared parameters between
classes). In that case, the likelihood function p(T |θ) can be factorized to

p(T |θ) = p(T1 |θ1)p(T2 |θ2)...p(TK |θK) (3)

where Tk = {x : (x, l) ∈ T ∧ l = k} is the training set for class k. The parameters θk for
individual classes can be estimated independently. ⇒ In the subsequent text, we will
drop the class index k. All analysis will be done “per class”.
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Maximum Likelihood (ML) Estimation

Consider the observations T = {x1, x2, ..., xN} and the known parametric form of the
likelihood function L(θ) = p(T |θ). The ML estimate of θ̂ is

θ̂ = argmax
θ

L(θ) = argmax
θ

p(T |θ) . (19a)

� If samples in T are independent and identically distributed (i.i.d) then
p({x1, x2, ..., xN}|θ) =

∏N
i=1 p(xi|θ), and the ML estimate for the class is

θ̂ = argmax
θ

N∏
i=1

p(xi|θ) . (4)

� The argument θ̂ maximizing likelihood in Eq. (4) equals the argument maximizing the
log-likelihood (as logarithm is an increasing function). This fact will be often be taken
advantage of in calculations.
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Example 1: Binomial Distribution (ML) (1)

There are red and green socks in the drawer. N socks have been drawn randomly from the
drawer, with replacement. The result is:

R red socks (5)
G green socks (G = N −R) (6)

Compute the Maximum Likelihood estimate for the actual percentage π of the red socks in
the drawer.

Analysis. For an individual draw, P (red|π) = π and P (green|π) = 1− π. For N
independent measurements with an outcome as in Eqs. (5, 6), the likelihood is

p(R,N |π) =
(
N

R

)
πR(1− π)N−R . (7)

Note: Consider a training set in a slightly different form: it is an ordered sequence of
observations T = (red, green, green, ..., green), with R observations "red" and G
observations "green", as before. What is the likelihood function for these observations? How
does it differ from Eq. (7)? Will it matter for the ML estimation result?
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Example 1: Binomial Distribution (ML) (2)

(copied from the previous slide:)

p(R,N |π) =
(
N

R

)
πR(1− π)N−R . (7)

Taking the derivative of p(R,N |π) with respect to π and setting it to zero gives

(
N

R

)
RπR−1(1− π)N−R −

(
N

R

)
πR(N −R)(1− π)N−R−1 = 0 , (8)

and thus
R(1− π)− (N −R)π = 0 (9)

which implies
π̂ML =

R

N
. (10)

The ML solution is the fraction of the red socks within the socks drawn.
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Example 2: Normal Distribution (ML) (1)

Let the conditional probability of a class be normal. Assume that the observations
T = {x1, x2, ..., xN} are i.i.d. and find the ML estimate for the mean and variance. The
likelihood to be maximized is:

P (T |µ, σ) = 1

σN
√

(2π)N
exp

[
− 1

2σ2

N∑
i=1

(xi − µ)2
]
. (11)

We require that the partial derivatives w.r.t. both µ and σ vanish:

∂P (T |µ, σ)
∂µ

= P (T |µ, σ) 1
σ2

(
N∑
i=1

(xi − µ)

)
= 0 (12)

∂P (T |µ, σ)
∂σ

= −P (T |µ, σ)N
σ

+ P (T |µ, σ) 1
σ3

(
N∑
i=1

(xi − µ)2
)

= 0 (13)

The first and second equations imply, respectively, the
terms on the right. The ML estimator for mean is
the sample mean (as before in Example 1) and the
ML estimator for variance is the sample variance, with
sample mean Eq. (14) plugged into Eq. (15).

µ̂ML =
1

N

N∑
i=1

xi , (14)

σ̂2
ML =

1

N

N∑
i=1

(xi − µ̂ML)
2 . (15)
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Example 2: Normal Distribution (ML) (2)

Let us try now with maximizing the log-likelihood:

L(T |µ, σ) = lnP (T |µ, σ) = −N lnσ − N
2
ln 2π − 1

2σ2

N∑
i=1

(xi − µ)2 . (16)

Again, setting the partial derivatives w.r.t. µ and σ to zero yeilds

1

σ2

N∑
i=1

(xi − µ) = 0 , (17)

−N
σ

+
1

σ3

N∑
i=1

(xi − µ)2 = 0 , (18)

which leads to the same solution as before.
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Maximum Likelihood—Features, Problems (1)

Why ML estimators?

Under very general conditions, ML is

� Asymptotically unbiased: as the number of observations N grows to infinity, ML
estimate approaches the actual parameters θ0 ( lim

N→∞
E(θ̂) = θ0)

� Asymptotically consistent: sequence of estimates converges in probability to θ0 as N
grows to infinity ( lim

N→∞
prob{‖θ̂ − θ0‖ ≤ ε} = 1)

� Asymptotically efficient

� Asymptotically normal (pdf of ML estimates as N →∞ approached Gaussian.)
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Maximum Likelihood—Features, Problems (2)

With low number of observations, the ML estimates can be counter-intuitive. Consider the
following examples:

� Binomial distribution, coin tossing, T = {H,H,H}. The ML estimate is πhead = 1
(completely unfair coin). Would you believe that estimate?

� Normal distribution, estimating x-coordinate of a particle. A range of feasible µ’s can
be known a priori, but the sample mean taken from a few observations can be outside
this range.

These examples demonstrate that employing a prior knowledge (or belief) about the
parameters to be estimated would be beneficial, if available.
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Maximum A Posteriori (MAP) Estimation

� The set of observations T is T = {x1, x2, ..., xN}.
� The parametric form of the likelihood function L(θ) = p(T |θ) is known.
� The prior distribution p(θ) of the model parameters θ is known.

MAP principle
The maximum a posteriori estimate θ̂ of the distribution parameters for the observed data T
is defined as:

θ̂ = argmax
θ

p(θ | T ). (19)

The posterior p(θ|T ) can be computed from p(T |θ) and the prior p(θ) using the Bayes
formula:

p(θ|T ) = p(T |θ)p(θ)
p(T )

. (20)

The denominator of Eq. (20) is independent of the parameters θ, and the solution θ̂ can be
found by maximizing the nominator only:

θ̂ = argmax
θ

p(θ | T ) = argmax
θ

p(T |θ)p(θ)
p(T )

= argmax
θ

p(T |θ)p(θ) (21)

which has practical implications and shows the difference w.r.t. the ML approach: The term
to be maximized is the product of the likelihood (as in the ML) and the prior on θ which
“shifts” the optimum θ̂ when the number of observations is low.
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Example 1, Binomial Distribution (MAP) (1)

Recall that
p(R,N |π) =

(
N

R

)
πR(1− π)N−R , (7)

where N is the total number of socks drawn, of which R are the red ones, G = N −R are
the green ones and π is the percentage of red socks in the sock population to be estimated.

We need a suitable prior on π. A lucky coincidence would be if the prior p(π) would take the
same functional form in π as the above equation, that is,

p(π) ∼ πA(1− π)B. (22)

This would imply that the the product of likelihood and the prior would be

p(R,N |π)p(π) ∼ πR(1− π)N−RπA(1− π)B = πR+A(1− π)N−R+B . (23)

The maximization of this term is already done, as due to this functional form it is the same
as the ML solution for (R+A) red socks out of the total number of (N +A+B). Thus,
for such a prior,

π̂MAP =
R+A

N +A+B
. (24)
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Example 1, Binomial Distribution (MAP) (2)

Examples:

- N = 2 socks drawn
- both of them are red (R = 2)
- the prior is set to β(r|2, 2) ∼ r(1− r)

0.0 0.2 0.4 0.6 0.8 1.0
π

0

1

2

likelihood P(R,N|π)
prior P(π)

posterior P(π|R,N)

- π̂ML = 2/2 = 1
- π̂MAP = (2 + 1)/(2 + 2) = 3/4

- N = 400 socks drawn
- of which R = 323 are red ones
- the prior is set to β(r|2, 2) ∼ r(1− r)

0.0 0.2 0.4 0.6 0.8 1.0
π

0

1

2

likelihood P(R,N|π)×20

prior P(π)

posterior P(π|R,N)×0.1

- π̂ML = 323/400
- π̂MAP = 324/401

http://cmp.felk.cvut.cz
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Example 1, Binomial Distribution (MAP) (3)

π̂MAP =
R+A

N +A+B
(24)

Note that the parameters A,B of the prior p(π) ∼ πA(1− π)B behave as “virtual”
observations; it is as if A red socks and B green socks have been already observed before
any real observation has been done.

The parameters of the prior (here A, B) are generally called hyperparameters. This name
distinguishes them from the parameters of the probabilistic model which are to be estimated.
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Example 1, Binomial Distribution (MAP) (4)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.5

1.0

1.5

2.0

2.5

β
(x
|a
,b

)

a=1, b=1

a=2, b=2

a=b=0.5

a=5, b=1

a=1, b=3

a=2, b=5

The prior distribution p(π) ∼ πA(1 − π)B which has
been just used is known as the Beta distribution, and
is defined as:
(note the subtle change A→ a− 1, B → b− 1)

β(π|a, b) = πa−1(1− π)b−1∫ 1

0
πa−1(1− π)b−1dπ

=
1

B(a, b)
πa−1(1−π)b−1

(25)
where B(a, b), the normalizing constant, is the
Beta function. Using the β distribution, the term
p(R,N |π)p(π) can be rewritten as

p(R,N |π)p(π) ∼ πR+A(1− π)N−R+B (26)
∼ β(R+A+ 1, N −R+B + 1) . (27)

Note that, indeed, the posterior p(π |R,N) = β(R+A+ 1, N −R+B + 1).
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Example 2: Normal Distr. with Unknown µ (MAP) (1)

Consider again the normal distribution p(T |µ, σ2), and for simplicity let the variance σ2 be
known and equal to σ2 = 1. Estimate the mean µ. We have

L(µ) = p(T |µ) =
N∏
i=1

p(xi|µ) =
1√

(2π)N
exp

[
−1
2

N∑
i=1

(xi − µ)2
]
. (28)

Let us consider the prior on µ to have the form

p(µ) =

{
2µ, 0 < µ ≤ 1

0, otherwise. 3 2 1 0 1 2 3
µ

0
1
2

P
(µ

)

(29)

The MAP estimate of µ will be found as

µMAP = argmax
µ

p(T |µ)p(µ) . (30)

Note that p(T |µ) p(µ) can attain maximum either inside the inverval 0 < µ < 1, or at its
border µ = 1 (not at the other border µ = 0, as p(0) = 0.)
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Example 2: Normal Distr. with Unknown µ (MAP) (4)

0.0 0.2 0.4 0.6 0.8 1.0
µ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

P
(µ
|X

)Z
(X

)

N=1
N=10
N=100
N=1000
N=10000

Left: p(T |µ)p(µ) evaluated for sample mean
µ′ = 0.4 and increasing cardinality of the
observation set T . Note:

� variance of the distribution decreases as
N grows;

� the distribution is quite close to the prior
for N = 1;

� influence of the prior decreases with
increasing N .

http://cmp.felk.cvut.cz


20/33
Example 2: Normal Distr. with Unknown µ (MAP) (3)

L(µ) = p(T |µ) = 1√
(2π)N

exp

[
−1
2

N∑
i=1

(xi − µ)2
]
. (28)

p(µ) =

{
2µ, 0 < µ ≤ 1

0, otherwise. 3 2 1 0 1 2 3
µ

0
1
2

P
(µ

)

(29)

Taking the log of p(T |µ)p(µ) gives (for the interval 0 < µ < 1):

ln p(T |µ)p(µ) = ln p(T |µ) + ln p(µ) = −N/2 ln 2π − 1

2

N∑
i=1

(xi − µ)2 + ln 2µ (31)

Taking the derivative w.r.t. µ and setting it to zero gives

∂ ln p(T |µ)p(µ)
∂µ

=

N∑
i=1

(xi − µ) +
1

µ
= 0 , (0 < µ < 1). (32)

Note that this is a decreasing function of µ and thus there can be at most one solution for
µ in the considered interval.
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Example 2: Normal Distr. with Unknown µ (MAP) (4)

Denoting S =
∑N
i=1 xi, this is rewritten as

S −Nµ+
1

µ
= 0 ⇒ Nµ− 1

µ
= S, (0 < µ < 1). (33)

It is easily checked that for any S, µ > 0 can be found such that this equation holds. Taken
with the previous observation that there is at most 1 solution, there is exactly 1 solution for
µ > 0.

Multiplying by µ, we get
Nµ2 − µS − 1 = 0. (34)

The roots of this quadratic equation are

µ =
S ±
√
S2 + 4N

2N
=

1

2

S

N
± 1

2

√
S2

N2
+

4

N
=

{
µ+ > 0

µ− < 0
. (35)

Only µ+ (always > 0) can be the solution of Eq. (33) if µ+ < 1. The root µ− can never be
the solution to it, as it is always < 0.

If µ+ < 1 then µMAP = µ+. Otherwise the maximum is attained at the right border of the
interval, and µMAP = 1.
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Example 2: Normal Distr. with Unknown µ (MAP) (5)

In conclusion, the MAP solution is the following:
� Compute S =

∑N
i=1 xi

� Compute µ+ = 1
2
S
N + 1

2

√
S2

N2 +
4
N .

� If µ+ < 1 then µMAP = µ+ else µMAP = 1.

Example: Consider the training set consisting of a single observation T = {x1}.

The estimate µMAP :

20 15 10 5 0 5 10 15 20
x1

0.0
0.2
0.4
0.6
0.8
1.0
1.2

µ
M
A
P

Note that for all x1 > 0, µMAP = 1.

Also note that, as N →∞,

µ+ → 1

2

(
S

N
+
|S|
N

)
. (36)

For a high number of observations and S > 0,
the solution will converge to the ML solution
µ̂ =

∑N
i=1 xi
N . This is the usual behavior of

MAP vs. ML: The prior distribution of
parameters (here µ) shifts the solution towards
the values which are a priori more probable,
but as evidence grows the influence of the
prior shades away.
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Conjugate Prior

Note the striking difference in the length of derivations for the two examples:

� For the Binomial Distribution example, the Beta distribution prior has been used which
simplified the analysis considerably. The observations only changed the instance of the
Beta distribution, the posterior has been the Beta distribution as well.

� For the Normal Distribution example, the prior p(µ) = 2µ (0 < µ < 1) has been used,
the analysis was a bit involved.

� Does there exist a suitable prior for the Normal distribution which would combine the
prior hyperparameters and the observations in a manner similar to what has been
observed with the Binomial Distribution example?

In general, such “suitable” priors are called conjugate.

An example for the mean µ of the normal distribution follows.
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Example 1: Normal Distr. with unknown µ, Conj. Prior (1)

Consider the prior p(µ) on µ to be distributed normally:

p(µ) = N
(
µ|µ0, σ

2
0

)
=

1√
2πσ2

0

exp

[
−1
2

(µ− µ0)
2

σ2
0

]
. (37)

The exponent of the likelihood p(T |µ) (recall σ2 = 1 is fixed and known) can be rewritten as

−1
2

N∑
i=1

(xi − µ)2 = −
1

2

(
N∑
i=1

x2i − 2µ

N∑
i=1

xi +Nµ2

)
= (38)

−1
2
N

µ2 − 2µ

∑N
i=1 xi
N︸ ︷︷ ︸
µ′

+C1

 = −N
2
(µ− µ′)2 + C2 , (39)

where µ′ is the sample mean of T and C1 and C2 are constants independent of µ. The
posterior p(µ|T ) can then be written again as a normal distribution (mean µc, var. σ2

c):

p(µ|T ) ∼
exp

[
−1

2N(µ− µ′)2
]
N
(
µ|µ0, σ

2
0

)
Z ′(T )

=
N
(
µ|µ′, 1

N

)
N
(
µ|µ0, σ

2
0

)
Z ′′(T )

= N
(
µ|µc, σ2

c

)
(40)
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Example 1: Normal Distr. with unknown µ, Conj. Prior (2)

It is easy to see that making a product of two normal distributions N
(
µ|µ1, σ

2
1

)
and

N
(
µ|µ2, σ

2
2

)
and normalizing it results in another normal distribution N

(
µ|µc, σ2

c

)
, as

looking at the exponent of the product, there are terms:

(µ− µ1)
2

σ2
1

+
(µ− µ2)

2

σ2
2

= µ2

[
1

σ2
1

+
1

σ2
2

]
− 2µ

[
µ1

σ2
1

+
µ2

σ2
2

]
+D1 (41)

=

[
1

σ2
1

+
1

σ2
2

](
µ−

[
µ1

σ2
1

+
µ2

σ2
2

]
/

[
1

σ2
1

+
1

σ2
2

])2

+D2 (42)

where D1 and D2 are constants which do not even need to be evaluated, as they will be
factored into the normalization provided by the term for normal distribution itself. Pairing
the parameters and the terms, we obtain

µc =

[
µ1

σ2
1

+
µ2

σ2
2

]
/

[
1

σ2
1

+
1

σ2
2

]
σ2
c =

[
1

σ2
1

+
1

σ2
2

]−1
. (43)

Thus for the case studied here,

P (µ|T ) =
N
(
µ|µ′, 1

N

)
N
(
µ|µ0, σ

2
0

)
Z ′′(T )

= N

µ|
[
Nµ′ + µ0

σ20

]
[N + 1/σ2

0]
,

1

N + 1/σ2
0

 . (44)
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Example 1: Normal Distr. with unknown µ, Conj. Prior (3)

Thus when the likelihood is normal in µ and the prior is also normal in µ, the posterior is
normal in µ as well.

Example: The posterior of µ for for sample mean µ′ = 1 and the prior
p(µ) = N

(
µ|µ0 = −2, σ2

0 = 1
)
, for different sizes of the observation set:

6 4 2 0 2 4 6
µ

0
2
4
6
8

10
12
14

P
(µ
|T

)

prior
N=1
N=10
N=100
N=1000

6 4 2 0 2 4 6
µ

0.0

0.2

0.4

0.6

0.8

1.0

P
(µ
|T

)Z
(T

)

(scaled to the same peak level)
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Bayesian Inference

� The requirements are the same as in MAP (it is necessary to know p(T |θ) and p(θ))

� ML and MAP search for the maximum of likelihood and likelihood combined with prior,
respectively.

� The Bayesian Inference does not pick such “best” solution, but instead minimizes the
risk R(θ) of the estimate θ (quadratic loss function and one-dimensional estimation
problem considered here):

R(θ) =

∫ ∞
−∞

p(t|T )(t− θ)2dt (45)

θBI = argmin
θ

R(θ) (46)

� This leads to
θBI =

∫ ∞
−∞

t p(t|T )dt . (47)

� It is very convenient when the prior has a suitable form (conjugate prior.)
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Example 1, Binomial Distribution (Bayes Inference)

We know (from the MAP analysis on slide 17) that for the prior p(π) = β(A+1, B +1), the
posterior p(π |R,N) is

p(π |R,N) = β(R+A+ 1, [N −R] +B + 1) . (48)

The estimate πBI obtained by Bayesian Inference is

πBI =
∫ 1

0
π p(π |R,N)dπ = R+A+1

N+A+B+2 , (49)

where we have used the known fact about the β distribution that the expected value for
β(a, b) is a/(a+ b).

Example: Consider R = 2, N = 2 and the uniform prior, p(π) = r0(1− r)0 (thus
A = 0, B = 0.) Then πBI = (R+ 1)/(N + 2) = 3/4 (πML = πMAP = R/N = 1.)

Useful known properties of the Beta distribution β(a, b):
� mode (= maximum value): a−1

a+b−2 (agrees with our computations)
� mean (expected value): a

a+b

� variance: ab
(a+b)2(a+b+1)
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Estimator Properties: Bias (1/5)

“Is an estimator biased?”

This question has the following meaning. Let us say that we observe N = 5 data points
x1, x2, ..., x5 and estimate µ̂ML and σ̂2

ML from them. These estimates will most likely be
different from the true parameters µ and σ of the distribution N (x|µ, σ). But how about if
we do this repeatedly, that is:
for i=1 to K do

get a 5-tuple
compute µML(i), σ2

ML(i)
end for
Average the obtained values: µ′ML = 1

K

∑K
i=1 µML(i), σ′2ML = 1

K

∑K
i=1 σ

2
ML(i)

If such a procedure produces true parameter values in the limit as K →∞ then the
estimator is unbiased. Otherwise, it is biased.

Mathematically, (for an example of µ) this is written as

µ− E

[
1

5

5∑
i=1

xi

]
= 0 iff the estimator is unbiased. (50)

where E is the expected value operator which integrates over the entire distribution of
5-tuples.
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This expected value is:

E

[
1

5

5∑
i=1

xi

]
=

∫∫∫∫∫ ∞
−∞

1

5
(x1 + ...+ x5)︸ ︷︷ ︸
estimator

N (x1|µ, σ)N (x2|µ, σ) · ... · N (x5|µ, σ)︸ ︷︷ ︸
5-tuples distribution

dx1...dx5

(51)

=
1

5

∫ ∞
−∞

x1N (x1|µ, σ) dx1︸ ︷︷ ︸
µ

∫ ∞
−∞
N (x2|µ, σ) dx2 · ... ·

∫ ∞
−∞
N (x5|µ, σ) dx5︸ ︷︷ ︸

1

+ 4 analogous terms (52)

=
1

5
5µ = µ . (53)

As the expected value of the sample mean estimator is µ, the estimator is unbiased. The
same is obviously true for arbitrary N .
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Is the variance estimator also unbiased? The expected value of the estimator is

E
[
σ2
ML

]
=

∫
...

∫ ∞
−∞

1

N

N∑
i=1

(xi − µML)
2

︸ ︷︷ ︸
estimator

N (x1|µ, σ) ...N (xN |µ, σ) dx1...dxN . (54)

The estimator is

1

N

N∑
i=1

(xi − µML)
2 =

1

N

N∑
i=1

xi − 1

N

N∑
j=1

xj

2

=
1

N

N∑
i=1

(xi − µ)−
1

N

N∑
j=1

(xj − µ)

2

(55)

and thus by substituting xi ← (xi − µ) Eq. (54) is rewritten as

E
[
σ2
ML

]
=

∫
...

∫ ∞
−∞

1

N

N∑
i=1

xi − 1

N

N∑
j=1

xj

2

N (x1|0, σ) ...N (xN |0, σ) dx1...dxN .

(56)
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(copied from the previous slide:)

E
[
σ2
ML

]
=

∫
...

∫ ∞
−∞

1

N

N∑
i=1

xi − 1

N

N∑
j=1

xj

2

N (x1|0, σ) ...N (xN |0, σ) dx1...dxN .

(56)
Next, we will use the identity

1

N

N∑
i=1

xi − 1

N

N∑
j=1

xj

2

=
1

N

N∑
i=1

x2i︸ ︷︷ ︸
T1

−

(∑N
i=1 xi
N

)2

︸ ︷︷ ︸
T2

(57)

E[x2k] is σ2 by an analogous construction as used in the derivation of expected value of
mean. Thus,

E[T1] = E

[
1

N

N∑
i=1

x2i

]
=

1

N
Nσ2 = σ2. (58)
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As for T2, it is sufficient to note that

E

( N∑
i=1

xi

)2
 =

N∑
i=1

E[x2i ]︸ ︷︷ ︸
σ2

−
∑
i6=j

E[xixj]︸ ︷︷ ︸
0

(59)

Taking the two results together,

E[σ2
ML] = σ2 − 1

N
σ2 =

N − 1

N
σ2. (60)

The ML estimator for the variance σ2 is thus biased.

The unbiased version of the variance estimator is

N

N − 1
σ2
ML =

1

N − 1

N∑
i=1

(xi − µML)
2 , (61)

where µML is the sample mean µML = 1
N

∑N
i=1 xi.
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