
1

Queue
Operations Enqueue, Dequeue, Front, Empty....
Cyclic queue implementation

Graphs
Breadth-first search (BFS) in a tree
Depth-first search (DFS) in a graph
Breadth-first search (BFS) in a graph

Search pruning

ALG 04

A4B33ALG 2011 / 04

2

73

7584

Stack

14 55 11 71 08 44 23

60Stack top 13

74

Elements are stored at the stack top
before they are processed.

Elements are removed from the stack top
and then they are processed.

Put at the top Push
Remove from the top Pop
Read the top Top
Is the stack empty? Empty

84

Operation names

A4B33ALG 2010 / 05

Stack bottom

3

73

7584

Queue

Queue front

14 55 11 71 08 44 23

60Queue tail
13

74

Insert at the tail Enqueue / InsertLast / Push ...
Remove from the front Dequeue / delFront / Pop ...
Read the front elem Front / Peek ...
Is the queue empty? Empty

84

Operation names

A4B33ALG 2010 / 05

Elements are stored at the queue tail
before they are processed.

Elements are removed from the queue front
and then they are processed.

4

Queue

Front

24

Tail

Insert(24)

24 11

24 11 90

Insert(11)

Insert(90)

DelFront()

Insert(43)

DelFront()

DelFront()

Insert(79)

11 90

11 90

90

43

43 79

43

43

Easy example
of a queue
life cycle.

Empty

A4B33ALG 2010 / 05

5

Cyclic queue implementation in an array

Front Tail

Insert 24, 11, 90, 43, 70.

DelFront, DelFront, DelFront .

Insert 10, 20.

DelFront, DelFront .

24 11 90 7043

7043

20 7043 10

20 10

Insert 55, 22, 33. 20 55 22 33 10

DelFront, DelFront . 55 22 33

An empty queue in
a fixed length array

A4B33ALG 2010 / 05

6

Tail index points to the first free position behind the last queue element.
Front index points to the first position occupied by a queue element.
When both indices point to the same position the queue is empty.

A4B33ALG 2010 / 05

Cyclic queue implementation in an array

class Queue:
def __init__(self, sizeOfQ):

self.size = sizeOfQ
self.q = [None] * sizeOfQ
self.front = 0
self.tail = 0

def isEmpty(self):
return (self.tail == self.front)

def Enqueue(self, node):
if self.tail+1 == self.front or \

self.tail - self.front == self.size-1:
pass # implement overflow fix here

self.q[self.tail] = node
self.tail = (self.tail + 1) % self.size Continue...

7

Tail index points to the first free position behind the last queue element.
Front index points to the first position occupied by a queue element.
When both indices point to the same position the queue is empty.

A4B33ALG 2010 / 05

Cyclic queue implementation in an array

def Dequeue(self):
node = self.q[self.front]
self.front = (self.front + 1) % self.size
return node

def pop(self):
return self.Dequeue()

def push(self, node):
self.Enqueue(node)

... continued

8

Breadth-first search (BFS) in a tree

30

6454

63 73 931303

12 52 82

7121

30 21 71 12 52 82 03 13 63 73 93 54 64

Order of visited nodes

Search direction

Neither the tree structure nor the recursion support this approach directly.

A4B33ALG 2010 / 05

9

12

03 13

21
30

71

63

52

73 93

82

54 64 30

Create an empty queue.

Enqueue the tree root.

Front Tail

While the queue is not empty do:
1. Remove the first element from the queue and process it.
2. Enqueue the children of removed element.

Initialization

Hlavní cyklus

Output

Main loop

1.
2.

A4B33ALG 2010 / 05

Breadth-first search (BFS) in a tree

10

12

03 13

21 71

63

52

73 93

82

54 64

30

30
x = Dequeue(), print (x.key).x

Enqeue(x.left), Enqueue(x.right). *)

21 71

12

03 13

71

63

52

73 93

82

54 64

21

30
x = Dequeue(), print (x.key).x

Enqeue(x.left), Enqueue(x.right). *)

71 12

) if exists) if exists

71

Output 30

Output 30 21

21

1.

2.

1.

2.

A4B33ALG 2010 / 05

Breadth-first search (BFS) in a tree

11

7112

03 13

21

63

52

73 93

82

54 64

30
x

12

21 71

63 73 93

54 64

12

30
x

Output 30 21 71

Output 30 21 71 12

1271

52 82

52 82

52 82 03 13

12

03 13

52 82

A4B33ALG 2010 / 05

Breadth-first search (BFS) in a tree

) if exists) if exists

x = Dequeue(), print (x.key).

Enqeue(x.left), Enqueue(x.right). *)

x = Dequeue(), print (x.key).

Enqeue(x.left), Enqueue(x.right). *)

1.

2.

1.

2.

12

5212
21

73 93

54 64

30
x

21 71
52

54 64

82

30 x

Output 30 21 71 12 52

Output 30 21 71 12 52 82

71

12

82 03 13

52

03 13 63

03 13 63 73 93

03 13 63

82

03 13 63 73 93

82 03 13 63

A4B33ALG 2010 / 05

Breadth-first search (BFS) in a tree

) if exists) if exists

x = Dequeue(), print (x.key).

Enqeue(x.left), Enqueue(x.right). *)

x = Dequeue(), print (x.key).

Enqeue(x.left), Enqueue(x.right). *)

1.

2.

1.

2.
82

13

0312

03

21
82

54 64

30
x

03 13

21 71
52

54 64

13

30 x

Output 30 21 71 12 52 82 03

Output 30 21 71 12 52 82 03 13

71

12

52

82

13 63 73 93

13 63 73 93

63 73 93

63 73 93

13 63 73 93

63 73 93

A4B33ALG 2010 / 05

Breadth-first search (BFS) in a tree

) if exists) if exists

x = Dequeue(), print (x.key).

Enqeue(x.left), Enqueue(x.right). *)

x = Dequeue(), print (x.key).

Enqeue(x.left), Enqueue(x.right). *)

1.

2.

1.

2.

14

6312

03 13

21
82

30
x

03 13

21 71

63

52

73

73

30
x

Output 30 21 71 12 52 82 03 13 63

Output

71

12

52

82

73 93 54 64

93 54 64

73 93

30 21 71 12 52 82 03 13 63 73
93 54 64

54 64

73 93

54 64

93

A4B33ALG 2010 / 05

Breadth-first search (BFS) in a tree

) if exists) if exists

x = Dequeue(), print (x.key).

Enqeue(x.left), Enqueue(x.right). *)

x = Dequeue(), print (x.key).

Enqeue(x.left), Enqueue(x.right). *)

1.

2.

1.

2.

63

15

9312

03 13

21

73 93

82

30
x

03 13

21 71

63

52

73 93

54

30
x

Output

Output

71

12

52

82
64

63

64

54

64

64

54

54 64

54 64

30 21 71 12 52 82 03 13 63 73 93

30 21 71 12 52 82 03 13 63 73 93 54

A4B33ALG 2010 / 05

Breadth-first search (BFS) in a tree

) if exists) if exists

x = Dequeue(), print (x.key).

Enqeue(x.left), Enqueue(x.right). *)

x = Dequeue(), print (x.key).

Enqeue(x.left), Enqueue(x.right). *)

1.

2.

1.

2.

16

6412

03 13

21

73 93

82

54 64

30
x

The queue is empty,
BFS is complete.

Output

71
52

63

30 21 71 12 52 82 03 13 63 73 93 54 64

Sometimes the queue contains just nodes of one level. See above:

An unempty queue always contains exactly
-- some (or all) nodes of one level and
-- all children of those nodes of this level which have already left the queue.

queue

A4B33ALG 2010 / 05

Breadth-first search (BFS) in a tree

) if exists.) if exists.

x = Dequeue(), print (x.key).

Enqeue(x.left), Enqueue(x.right). *)

1.

2.

17

def binaryTreeBFS(node):
if node == None: return
q = Queue(100) # init
q.Enqueue(node) # root into queue
while (not q.isEmpty()):

node = q.Dequeue()
print(node.key, end = ' ') # process node
if node.left != None: q.Enqueue(node.left)
if node.right != None: q.Enqueue(node.right)

A4B33ALG 2010 / 05

Breadth-first search (BFS) in a tree

Graphs

• Graph is an ordered pair of
• set of vertices (nodes) V and

set of pairs of vertices E .
Each pair is an edge.

• G = (V, E)
• Example:

•V = {a, b, c, d, e}
•E = {{a,b},{b,e},{b,c},

{c,e},{e,d}}

a

c

b

e
d

2011 18A4B33ALG-04

Graphs - directed/undirected

• Undirected graph
o An edge is an unordered

pair of vertices.
•E = {{a,b},{b,e},{b,c},

{c,e},{e,d}}

a

c

b

e
d

• Directed graph
o An edge is an ordered

pair of vertices.
•E = {{a,b},{b,e},{b,c},

{c,e},{e,d}}

a

c

b

e
d

2011 19A4B33ALG-04

Graph – adjacency matrix

• Let G = (V, E) be graph with n vertices

• Denote vertices v1, …, vn (in an arbitrary order)

• Adjacency matrix of G is a matrix of order n

defined by the relation

n
jijiG aA 1,,)(



 


otherwise

Evvfor
a ji

ji 0
},{1

,

2011 20A4B33ALG-04

Graph – adjacency matrix

• Directed graph example

a b c d e

a 0 1 0 0 0

b 0 0 1 0 1

c 0 0 0 0 1

d 0 0 0 0 0

e 0 0 0 1 0

a

c

b

e
d

2011 21A4B33ALG-04

Graph – list of neighbours

a

c

b

e
d

• Let G = (V, E) be an (un)directed graph with n vertices.

• Denote vertices v1, …, vn (in an arbitrary order).

• List of neighbours of G is an array P of size n of pointers.

• P[i] points to the list of all vertices which are

adjacent to vi .

a

b

c

d

e

eb

e

dbc

b

eca

2011 22A4B33ALG-04

Graph most ususal representations

2011 23A4B33ALG-04

A

B

C

D

E

F

G

H

A

F

B

D

D

C

H

C

G

C

D

A

F

G

D

G

H

E

D

E

G

B

0 1 0 1 0 0 0 0

1 0 0 1 0 0 0 0

0 0 0 1 0 1 1 0

1 1 1 0 1 0 1 0

0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0

0 0 1 1 0 1 0 1
0 0 0 0 1 0 1 0

A

B

C

D

E

F

G

H

A B C D E F G H

C D E

F G H

BA

Linked list representation

Adjacency matrix

1/-

2/-

1/-

2/-

3/-

1/-

2/-

3/- 4/-

2011 24A4B33ALG-04

C D E

F G H

BA

Stack C
Output C

C D G
C D G

C D E

F G H

BA

C D E

F G H

BA

C D
C D

C D G H
C D G H

C D E

F G H

BA

1/-

Stack
Output

Stack
Output

Stack
Output

Depth-first search (DFS) in a graph

1/-

2/-

3/- 4/-

5/- 1/-

2/-

3/- 4/-

5/6

1/-

2/-

3/- 4/7

5/6 1/-

2/-

3/- 4/7

5/6

8/-

2011 25A4B33ALG-04

C D G H E
C D G H E

C D E

F G H

BA

C D G H
C D G H E

C D E

F G H

BA

C D G
C D G H E

C D E

F G H

BA

C D G F
C D G H E F

C D E

F G H

BA

Stack
Output

Stack
Output

Stack
Output

Stack
Output

Depth-first search (DFS) in a graph

1/-

2/-

3/- 4/7

5/6

8/9

1/-

2/-

3/10 4/7

5/6

8/9

1/-

2/-

3/10 4/7

5/6

8/9

11/-
1/-

2/-

3/10 4/7

5/6

8/9

11/-12/-

2011 26A4B33ALG-04

C D G
C D G H E F

C D E

F G H

BA

C D
C D G H E F

C D E

F G H

BA

C D B
C D G H E F B

C D E

F G H

BA

C D B A
C D G H E F B A

C D E

F G H

BA

Stack
Output

Stack
Output

Stack
Output

Stack
Output

Depth-first search (DFS) in a graph

1/-

2/-

3/10 4/7

5/6

8/9

11/-12/13

1/-

2/-

3/10 4/7

5/6

8/9

11/1412/13

1/-

2/15

3/10 4/7

5/6

8/9

11/1412/13

1/16

2/15

3/10 4/7

5/6

8/9

11/1412/13

2011 27A4B33ALG-04

C D B
C D G H E F B

C D B
C D G H E F B A

C D E

F G H

BA

C D
C D G H E F B A

C D E

F G H

BA

C
C D G H E F B A

C D E

F G H

BA

C D B
C D G H E F B C D G H E F B A

C D E

F G H

BA

Stack
Output

Stack
Output

Stack
Output

Stack
Output

Depth-first search (DFS) in a graph

Fresh nodes are those nodes which have not been visited yet.
Before the search starts, all nodes are fresh.
A fresh node becomes open when it it visited for the first time.
The set of fresh nodes shrinks or remains the same during the search.

Open nodes are those nodes which have been already visited but were not
closed yet.
The set of open nodes may grow and shrink during the search.

Closed nodes are those nodes which will not be visited any more.
When each neighbour of a current node in the search is either open or closed
current node becomes closed.
The set of closed does only grow during the search.
When the search terminates all nodes are closed.

2011 28A4B33ALG-04

Fresh

Open

Closed

Life cycle of a node during the DFS
Fresh - open - closed

Depth-first search (DFS) in a graph

Fresh: A fresh node is assigned no time (neither open nor closed).
Open: An open node is assigned open time and no close time.
Closed: A closed node is assigned both open and close times.

In some implementations, it is not necessary to produce the open and close times.

However, it is always necessary to register explicitely the state of each node --
fresh/closed. Open nodes are then those ones which were not closed yet and are still
on the stack.

In the recursive variant of DFS, each recursive call corresponds to a single node
processing including all visits to this node. The node becomes open when the node
is the actual parameter of the current recursive function call. The node becomes
closed when the same call terminates.
The neighbours of the node are checked one by one in the body of the function and
the fresh ones becomes the parameters of the recursive calls. Therefore, it is enough
to register only one-bit information in each node: Fresh or not fresh.

2011 29A4B33ALG-04

Implementation remark

Depth-first search (DFS) in a graph

2011 30A4B33ALG-04

Printing the node when
the node becomes closed
results in the sequence

C
C D G H E F B A

E H F G A B D C

C D E

F G H

BA

C D
C D G
C D G H
C D G H E
C D G H
C D G
C D G F
C D G
C D
C D B
C D B A
C D B
C D
C
--

Processing a node when it becomes closed
is used in the algorithms of
-- bridges and cutvertices detection in undirected
graphs
-- strongly connected components detection in
directed graphs.

Stack contents

Depth-first search (DFS) in a graph

Printing the node when
the node becomes open
results in the sequence

2011 31A4B33ALG-04

C D E

F G H

BA

1/16

2/15

3/10 4/7

5/6

8/9

11/1412/13 1/16

2/15

3/10

4/7

5/6

8/9

11/14

12/13

C

D

G

H

E

F

B

A

Note, that in a subtree with a root X it holds for each node Y  X:
Open_time(X)  Open_time(Y)  Close_time(Y)  Close_time(X).

On the other hand, when Y is not a part of the subtree rooted in X then
Close_time(X)  Open_time(Y) or Close_time(Y)  Open_time(X)

The nuber of nodes in the subtree rooted in X is always
(Close_time(X) + 1 ─ Open_time(X)) / 2.

DFS-tree
with open and close times of
the nodes

Depth-first search (DFS) in a graph

def DFS(graph):
visited = [False] * graph.size
stack = Stack()
stack.push(graph.nodes[0]) # start search in node 0
visited[0] = True
while not stack.isEmpty():

node = stack.pop()
print(node.id, end = " ") # process the node
for neigh in node.neighbours:

if not visited[neigh.id]:
stack.push(neigh)
visited[neigh.id] = True

2011 32A4B33ALG-04

Depth-first search (DFS) in a graph -- iteratively

def DFSrec(node, visited):
visited[node.id] = True
print(node.id, end = " ") # process the node
for neigh in node.neighbours:

if visited[neigh.id] == False:
DFSrec(neigh, visited)

def DFSrecRun(graph):
visited = [False] * graph.size
DFSrec(graph.nodes[0], visited)

2011 33A4B33ALG-04

Depth-first search (DFS) in a graph -- recursively

Fresh nodes are those nodes which have not been visited yet.
Before the search starts, all nodes are fresh.
A fresh node becomes open when it it visited for the first time.
The set of fresh nodes shrinks or remains the same during the search.

Open nodes are those nodes which have been already visited but were not
closed yet.
The set of open nodes may grow and shrink during the search.

Closed nodes are those nodes which will not be visited any more.
When each neighbour of a current node in the search is either open or closed
current node becomes closed.
The set of closed does only grow during the search.
When the search terminates all nodes are closed.

2011 34A4B33ALG-04

Fresh

Open

Closed

Life cycle of a node during BFS
is conceptually identical to the node lifecycle during DFS.

Breadth-first search (BFS) in a graph

11

1

1

2011 35A4B33ALG-04

D E

F G H

BA

Queue C
Output C

E

F G H

BA

D
C

0 0
C DC

E

F G H

BA

D F
C

0
C D

1

1
E

F G H

BA

0
C D

D F G
C

Breadth-first search (BFS) in a graph

Queue
Output

Queue
Output

Queue
Output

2

2222

2

2011 36A4B33ALG-04

11

1
E

F G H

BA

0
C D

D F G
C D

11

1
E

F G H

BA

0
C D

F G A
C D

11

1
E

F G H

BA

0
C D

F G A B
C D

11

1
E

F G H

BA

0
C D

F G A B E
C D

Breadth-first search (BFS) in a graph

Queue
Output

Queue
Output

Queue
Output

Queue
Output

2

22

2011 37A4B33ALG-04

2

11

1
E

F G H

BA

0
C D

F G A B E
C D F

2

11

1
E

F G H

BA

0
C D

G A B E
C D F G

2

11

1
E

F G H

BA

0
C D

A B E H
C D F G

22

2

11

1
E

F G H

BA

0
C D

A B E H
C D F G A

Breadth-first search (BFS) in a graph

Queue
Output

Queue
Output

Queue
Output

Queue
Output

2

22

2011 38A4B33ALG-04

22

2

11

1
E

F G H

BA

0
C D

C D F G A B E H

22

2

11

1
E

F G H

BA

0
C D

B E H
C D F G A B

22

2

11

1
E

F G H

BA

0
C D

E H
C D F G A B E

2

22

2

11

1
E

F G H

BA

0
C D

H
C D F G A B E H

Breadth-first search (BFS) in a graph

Queue
Output

Queue
Output

Queue
Output

Queue
Output

0

1 1 1

2 2 2 2

2011 39A4B33ALG-04

C

D G

HE

F

BA

The node depth in the BFS tree is equal to
its distance from the start node in BFS.

BFS-tree
with distances to the start node (root)
of all nodes

2

22

2

11

1
E

F G H

BA

0
C D

BFS algorithm is exploited in e.g.:
Testing of graph connectivity, testing existence of a cycle in a graph,
testing if a graph is bipartite, etc.
Typically BFS is used to compute distance(s) from a given node to either
one other node or to all other nodes.

Breadth-first search (BFS) in a graph

The open and close times are
not essential in BFS.

Fresh: A fresh node is assigned no distance from the start node.
Open: An open node is assigned a distance from the start node and it is in the queue.
Closed: A closed node is assigned a distance from the start node and it is not in the
queue.

It is not necessary to register explicitely fresh/open/closed state of the nodes.
The contents of the queue and the distance (assigned / not assigned) define
unambiguously the node state.

BFS is an iterative process a recursive variant is not used.
(A recursive implementation would be more artificial and less clear.)

2011 40A4B33ALG-04

Implementation remark

Breadth-first search (BFS) in a graph

def BFS(graph):
visited = [False] * graph.size
queue = Queue(200)
queue.Enqueue(graph.nodes[0])
visited[0] = True
while not queue.isEmpty():

node = queue.Dequeue()
print(node.id, end = " ") # process node
for neigh in node.neighbours:

if not visited[neigh.id]:
queue.Enqueue(neigh)
visited[neigh.id] = True

2011 41A4B33ALG-04

Breadth-first search (BFS) in a graph

def BFSdist(graph):
visited = [False] * graph.size
dist = [9999999999999] * graph.size # infinity == 99...9
queue = Queue(graph.size)
queue.Enqueue(graph.nodes[0]) # start in node 0
visited[0] = True
dist[0] = 0
while not queue.isEmpty():
node = queue.Dequeue()
print(node.id, end = " ") # process node
for neigh in node.neighbours:
if not visited[neigh.id]:
queue.Enqueue(neigh)
visited[neigh.id] = True
dist[neigh.id] = dist[node.id]+1

print (dist) # process the distances or return, etc.

2011 42A4B33ALG-04

Node distances by BFS in a graph

Each single operation on the queue/stack and each single operation on additional
data structures and nodes/edges is of constant time (and memory) complexity.

Each node enters the queue/stack only once and it leaves the queue/stack only once.
The state of the node (fresh/open/closed) is tested more times. The number of these
tests is equal to the degree of the node (the search tries to access the node from its
neighbours).

The sum of all node degrees is equal to twice the number of edges, in any graph.

In total

(|V| + |E|).

2011 43A4B33ALG-04

Asymptotic complexity

Breadth-first and Depth-first search (BFS & DFS) in a graph

Search pruning

• Search speedup
• Pruning (skipping) of unpromising possibilities
• When the analyse of the current state reveals that

• it is an unpromising state
• surely it does not lead to the solution

• we "cut off" (prune) the whole subtree of states of which
the current state is the root

2011 44A4B33ALG-04

Search tree

Current state

Pruning example – magic square

• Magic square of order N
o square matrix of order N
o contains exactly once each value from 1 to N2

o sum of all rows and all columns is the same
• Example

• Brute force approach: Generate all possible permutations of

positions of numbers from 1 to N2

• Pruning: Whenever the sum of the row or column is not correct:

o sum of all values in the square is ½ N2 (N2+1)
o sum of all values in a row or column is ½ N (N2+1)

2011 45A4B33ALG-04

2 9 4
7 5 3
6 1 8

Search pruning heuristics

• Heuristic is a hint which tells us which order of actions is likely
to produce quickly the solution.
• The effectivity of the solution is not guaranteed.
• Heuristics can be used to asses the order of
vertices/edges/paths in which they are processed during the
search in large graphs.

2011 46A4B33ALG-04

• Example: Knight tour on an N x N chessboard (visit all fields).
• Good heuristic: Explore first those fields from which there are
fewest possibilities of continuing the tour in different directions.

• Speedup on the 8 x 8 chessboard: Almost 100 000 times.

