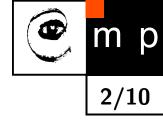
Statistical Machine Learning (BE4M33SSU) Lecture 1.

Czech Technical University in Prague

Course format



Teachers: Jan Drchal, Boris Flach, Vojtech Franc and Daniel Bonilla

Format: 1 lecture & 1 tutorial per week (6 credits), tutorials of two types

- seminars: discussing solutions of theoretical assignments (published a week before the class). You are expected to work on them in advance.
- practical labs: explaining and discussing practical homeworks, i.e. implementation of selected methods in Python (or Matlab). You have to submit
 - 1. a report in PDF format (typeset preferably in LaTeX). Exception: if necessary, you may include lengthy formula derivations as handwritten scans.
 - 2. your code either as source file or as python notebook. The code must be executable.

Code either as source file or as python notebook. The code must be executable.

Grading: 40% homeworks + 60% written exam = 100% (+ bonus points)

Prerequisites:

- probability theory and statistics (A0B01PSI)
- pattern recognition and machine learning (AE4B33RPZ)
- optimisation (AE4B33OPT)

More details: https://cw.fel.cvut.cz/wiki/courses/be4m33ssu/start

Goals

The aim of statistical machine learning is to develop systems (models and algorithms) for solving prediction tasks given a set of examples and some prior knowledge about the task.

Machine learning has been successfully applied e.g. in areas

- text and document classification,
- speech recognition and natural language processing,
- computational biology (genes, proteins) and biological imaging & medical diagnosis
- computer vision,
- fraud detection, network intrusion,
- and many others

You will gain skills to construct learning systems for typical applications by successfully combining appropriate models and learning methods.

Characters of the play

(m p 4/10

• **object features** $x \in \mathcal{X}$ are observable; x can be:

a categorical variable, a scalar, a real valued vector, a tensor, a sequence of values, an image, a labelled graph, . . .

• state of the object $y \in \mathcal{Y}$ is usually hidden; y can be: see above

• prediction strategy (a.k.a. inference rule) $h: \mathcal{X} \to \mathcal{Y}$; depending on the type of \mathcal{Y} :

- y is a categorical variable \Rightarrow classification
- y is a real valued variable \Rightarrow regression
- training examples $\mathcal{T} = \{(x, y) \mid x \in \mathcal{X}, y \in \mathcal{Y}\}$

• loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_+$ penalises wrong predictions, i.e. $\ell(y, h(x))$ is the loss for predicting y' = h(x) when y is the true state

Goal: optimal prediction strategy $h \colon \mathcal{X} \to \mathcal{Y}$ that minimises the loss

Q: give meaningful application examples for combinations of different $\mathcal{X},\,\mathcal{Y}$ and related loss functions

Statistical machine learning

Main assumption:

- \bullet X, Y are random variables,
- X, Y are related by an <u>unknown</u> joint p.d.f. p(x,y),
- we can collect examples (x, y) drawn from p(x, y).

Typical concepts:

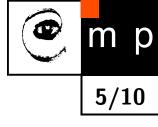
- regression: $Y = f(X) + \epsilon$, where f is unknown and ϵ is a random error,
- classification: p(x, y) = p(y)p(x | y), where p(y) is the prior class probability and p(x | y) the conditional feature distribution.

Consequences and problems

- the inference rule h(X) and the loss $\ell(Y, h(X))$ become random variables.
- risk of an inference rule $h(X) \Rightarrow$ expected loss

$$R(h) = \mathbb{E}[\ell(Y, h(X))] = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y)\ell(y, h(x))$$

- how to estimate R(h) if p(x, y) is unknown?
 - how to choose an optimal predictor h(x) if p(x, y) is unknown?



Statistical machine learning

Estimating R(h):

collect an i.i.d. test sample $S^m = \{(x^i, y^i) \in \mathcal{X} \times \mathcal{Y} \mid i = 1, ..., m\}$ drawn from the distribution p(x, y),

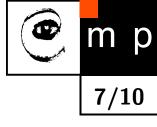
estimate the risk R(h) of the strategy h by the empirical risk

$$R(h) \approx R_{\mathcal{S}^m}(h) = \frac{1}{m} \sum_{i=1}^m \ell(y^i, h(x^i))$$

Q: how strong can they deviate from each other? (see next lectures)

$$\mathbb{P}\Big(|R_{\mathcal{S}^m}(h) - R(h)| > \epsilon\Big) \le ??$$

Statistical machine learning



Choosing an optimal inference rule h(x)

If p(x, y) is known:

The smallest possible risk is

$$R^* = \inf_{h \in \mathcal{Y}^{\mathcal{X}}} R(h) = \inf_{h \in \mathcal{Y}^{\mathcal{X}}} \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \ell(y, h(x)) = \sum_{x \in \mathcal{X}} p(x) \inf_{y' \in \mathcal{Y}} \sum_{y \in \mathcal{Y}} p(y \mid x) \ell(y, y')$$

The corresponding best possible inference rule is the Bayes inference rule

$$h^*(x) = \operatorname*{arg\,min}_{y' \in \mathcal{Y}} \sum_{y \in \mathcal{Y}} p(y \mid x) \ell(y, y')$$

But p(x, y) is <u>not known</u> and we can only collect examples drawn from it. We need:

Learning algorithms that use training data and prior assumptions/knowledge about the task

Learning types

Training data:

- $\bullet \text{ if } \mathcal{T}^m = \left\{ (x^i, y^i) \in \mathcal{X} \times \mathcal{Y} \mid i = 1, \dots, m \right\} \Rightarrow \text{supervised learning}$
- if $\mathcal{T}^m = \left\{ x^i \in \mathcal{X} \mid i = 1, \dots, m \right\} \Rightarrow$ unsupervised learning
- if $\mathcal{T}^m = \mathcal{T}_l^{m_1} \bigcup \mathcal{T}_u^{m_2}$, with labelled training data $\mathcal{T}_l^{m_1}$ and unlabelled training data $\mathcal{T}_u^{m_2}$ \Rightarrow semi-supervised learning

Prior knowledge about the task:

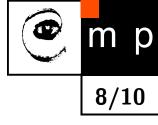
• **Discriminative learning:** assume that the optimal inference rule h^* is in some class of rules $\mathcal{H} \Rightarrow$ replace the true risk by empirical risk

$$R_{\mathcal{T}}(h) = \frac{1}{|\mathcal{T}|} \sum_{(x,y)\in\mathcal{T}} \ell(y,h(x))$$

and minimise it w.r.t. $h \in \mathcal{H}$, i.e. $h_{\mathcal{T}}^* = \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} R_{\mathcal{T}}(h)$.

Q: How strong can $R(h^*_{\mathcal{T}})$ deviate from $R(h^*)$? How does this deviation depend on \mathcal{H} ?

$$\mathbb{P}\Big(|R(h_{\mathcal{T}}^*) - R(h^*)| > \epsilon\Big) \le ??$$



Learning types

• Generative learning: assume that the true p.d. p(x, y) is in some parametrised family of distributions, i.e. $p = p_{\theta^*} \in \mathcal{P}_{\Theta} \Rightarrow$ use the training set \mathcal{T} to estimate $\theta \in \Theta$:

9/10

- 1. $\theta_{\mathcal{T}}^* = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \log p_{\theta}(\mathcal{T})$, i.e. <u>maximum likelihood estimator</u>,
- 2. set $h_{\mathcal{T}}^* = h_{\theta_{\mathcal{T}}^*}$, where h_{θ} denotes the Bayes inference rule for the p.d. p_{θ} .
- Q: How strong can $\theta^*_{\mathcal{T}}$ deviate from θ^* ? How does this deviation depend on \mathcal{P}_{Θ} ?

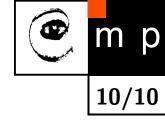
Possible combinations (training data vs. learning type)

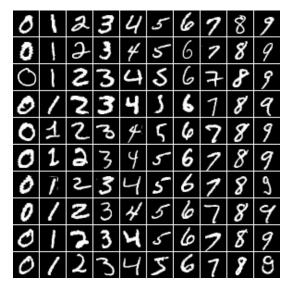
	discr.	gener.
superv.	yes	yes
semi-sup.	(yes)	yes
unsuperv.	no	yes

In this course:

- discriminative: Support Vector Machines, Deep Neural Networks
- generative: mixture models, Hidden Markov Models
- 🔶 other: Bayesian learning, Ensembling

Example: Classification of handwritten digits





 $x \in \mathcal{X}$ - grey valued images, 28x28, $y \in \mathcal{Y}$ - categorical variable with 10 values

- discriminative: Specify a class of strategies \mathcal{H} and a loss function $\ell(y, y')$. How would you estimate the optimal inference rule $h^* \in \mathcal{H}$?
- generative: Specify a parametrised family p_θ(x, y), θ ∈ Θ and a loss function ℓ(y, y').
 How would you estimate the optimal θ* by using the MLE? What is the Bayes inference rule for p_{θ*}?