
STATISTICAL MACHINE LEARNING (WS2022/23)
SEMINAR 3

Assignment 1. A professor created 1000 tests that he uses for examining students. Ev-
ery student has an opportunity to come for one consultation, during which the professor
gives the student 10 tests for self-study. At the day of exam, the professor randomly
chooses one out of the 1000 tests. It may happen that the exam test is the same as one
of the 10 tests a student got for self-study. Then, the student is just lucky and passes the
exam for sure even without any knowledge. From the professor’s viewpoint, this is an
exam failure.

a) If a single student comes to the exam, what is the probability of exam failure, that is,
the student passes just because of luck?

b) If there are N students coming to the exam, what is the probability of the exam
failure, that is, at least one student passes because of luck? Derive an upper bound on
the probability of the exam failure. Hint: use the union bound.

Assignment 2. Assume we are training a Convolution Neural Network (CNN) based
classifier h : X → Y to predict a digit y ∈ Y = {0, 1, . . . , 9} from an image x ∈ X . We
train the CNN by the Stochastic Gradient Descent (SGD) algorithm using 100 epochs.
After each epoch we save the current weights so that at the end of training we have a
set H = {ht : X → Y | i = 1, . . . , 100} containing 100 different CNN classifiers. The
goal is to select the best CNN out ofH that has the minimal classification error

R(h) = E(x,y)∼p([[y 6= h(x)]]) .

where the expectation is w.r.t. an unknown distribution p(x, y) generating the data.
Because p(x, y) is unknown, we approximate R(h) by the empirical risk

RVm(h) =
1

m

m∑
i=1

[[yj 6= h(xj)]] ,

computed from a validation set Vm = {(xi, yi) ∈ (X × Y) | i = 1, . . . ,m} containing
m examples i.i.d. drawn from p(x, y).

a) Define a method based on the Empirical Risk Minimization which uses Vm to select
the best CNN out ofH.

b) Let ĥ ∈ H be a CNN classifier selected in assignment a). Let us say we want to use
the same validation set Vm not only to select ĥ but also to estimate the true error R(ĥ).
Compute the tolerance ε such that

R(ĥ) ≤ RVm(ĥ) + ε
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holds with probability γ = 0.95 at least.

c) How many examples m we need to have in the validation set Vm to a guarantee that

R(ĥ) ≤ RVm(ĥ) + ε

holds with probability γ ∈ (0, 1) at least where ε > 0 is the maximal allowed tolerance
of the estimate chosen by us. Solve the problem for general γ, ε and the size of hypoth-
esis space |H|. Then, compute the number of examples m for the tolerance ε = 0.01,
confidence level γ = 0.95 and |H| = 100.

Assignment 3. Assume two-class classification problem, Y = {−1,+1}, with 0/1-loss
`(y, y′) = [[y 6= y′]], when the input space X = [0, 1]n is n-dimensional hypercube. Let
us partition X into K equally sized bins Xj , j ∈ {1, . . . , K}, each bin being itself a
hypercube, such that

X = ∪K
k=1Xk and Xk ∩ Xj = ∅ , ∀k 6= j ,

where K = Dn, D ∈ {1, 2, 3, . . . , }. A histogram classifier h : X → {−1,+1},
parametrized by a vector w ∈ {−1,+1}K , assigns input x into class wk where k iden-
tifies hypercube Xk such that x ∈ Xk, that is,

h(x) =
K∑
k=1

wk[[x ∈ Xk]] . (1)

Let

HK =

{
h : X → {−1,+1} | h(x) =

K∑
k=1

wk[[x ∈ Xk]] ,w ∈ {−1,+1}K
}

denote a hypothesis space composed of all histogram classifiers that partition the input
space intoK hypercubes. Assume we have a training set T m = {(x1, y1), . . . , (xm, ym)} ∈
(X × {+1,−1})m drawn i.i.d. from some unknown p(x, y).

a) How does the number of strategies |HK | depend on the number of bins K and on D?

b) Assume the number of bins K is fixed. The ERM based algorithm transforms learn-
ing of the histogram classifier into optimization problem

hK ∈ Argmin
h∈HK

RT m(h) where RT m(h) =
1

m

m∑
j=1

`(yj, h(xj)) . (2)

Design computationaly tractable algorithm which solves the problem (2).

c) Design an algorithm based on the structural risk minimization principle to learn the
weights w and the number of bins K simultaneously using a single training set T m.


