STATISTICAL MACHINE LEARNING (WS2022/23)
 SEMINAR 2

Assignment 1. We are given a prediction strategy $h: \mathcal{X} \rightarrow \mathcal{Y}=\{1, \ldots, Y\}$ assigning observations $x \in \mathcal{X}$ into one of Y classes. Our task is to estimate the true risk $R(h)=$ $\mathbb{E}_{(x, y) \sim p} \ell(y, h(x))$ where $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ is some application specific loss function. To this end, we collect a set of examples $\mathcal{S}^{l}=\left\{\left(x^{i}, y^{i}\right) \in(\mathcal{X} \times \mathcal{Y}) \mid i=1, \ldots, l\right\}$ drawn i.i.d. from the distribution $p(x, y)$ and compute the test risk

$$
R_{\mathcal{S}^{l}}(h)=\frac{1}{l} \sum_{i=1}^{l} \ell\left(y^{i}, h\left(x^{i}\right)\right) .
$$

We want to construct the confidence interval such that

$$
\begin{equation*}
R(h) \in\left(R_{\mathcal{S}^{l}}(h)-\varepsilon, R_{\mathcal{S}^{l}}(h)+\varepsilon\right) \quad \text { holds with probability } \gamma \in(0,1) \tag{1}
\end{equation*}
$$

The number of examples l, the precision parameter ε and the confidence level γ are three interdependent variables, i.e., fixing two of the variables allows to compute the third one.
a) Use the Hoeffding's inequality to derive a formula to compute ε as a function of l and γ such that (1) holds.
b) Use the Hoeffding's inequality to derive a formula to compute l as a function of ε and γ such that (1) holds.
c) Instantiate the formulas derived in a) and b) for the following loss functions:
(1) $\ell\left(y, y^{\prime}\right)=\llbracket y \neq y^{\prime} \rrbracket$
(2) $\ell\left(y, y^{\prime}\right)=\left|y-y^{\prime}\right|$
(3) $\ell\left(y, y^{\prime}\right)=\llbracket\left|y-y^{\prime}\right| \leq K \rrbracket$ where $K<Y$
d) Assume that use the $\operatorname{loss} \ell\left(y, y^{\prime}\right)=\llbracket y \neq y^{\prime} \rrbracket$. Plot the precision ε as a function of the number of examples $l \in\{10,100, \ldots, 100000\}$ for confidence levels $\gamma \in$ $\{0.9,0.95,0.99\}$.
e) Assume that we use the loss $\ell\left(y, y^{\prime}\right)=\llbracket y \neq y^{\prime} \rrbracket$. What is the minimal number of examples l we need to use to have a guarantee that the test risk will approximate the true risk with error $\pm 1 \%$ at most?

Assignment 2. Let \mathcal{X} be a set of input observations and $\mathcal{Y}=\mathcal{A}^{n}$ a set of sequences of length n defined over a finite alphabet \mathcal{A}. Let $h: \mathcal{X} \rightarrow \mathcal{Y}$ be a prediction rule that for each $x \in \mathcal{X}$ returns a sequence $h(x)=\left(h_{1}(x), \ldots, h_{n}(x)\right)$. Assume that we
want to measure the prediction accuracy of $h(x)$ by the expected Hamming distance $R(h)=\mathbb{E}_{\left(x, y_{1}, \ldots, y_{n}\right) \sim p}\left(\sum_{i=1}^{n} \llbracket h_{i}(x) \neq y_{i} \rrbracket\right)$ where $p\left(x, y_{1}, \ldots, y_{n}\right)$ is a p.d.f. defined over $\mathcal{X} \times \mathcal{Y}$. As the distribution $p\left(x, y_{1}, \ldots, y_{n}\right)$ is unknown we estimate $R(h)$ by the test error

$$
R_{\mathcal{S}^{l}}(h)=\frac{1}{l} \sum_{j=1}^{l} \sum_{i=1}^{n} \llbracket y_{i}^{j} \neq h_{i}\left(x^{j}\right) \rrbracket
$$

where $\mathcal{S}^{l}=\left\{\left(x^{i}, y_{1}^{i}, \ldots, y_{n}^{i}\right) \in(\mathcal{X} \times \mathcal{Y}) \mid i=1, \ldots, l\right\}$ is a set of examples drawn from i.i.d. random variables with the distribution $p\left(x, y_{1}, \ldots, y_{n}\right)$.
a) Assume that the sequence length is $n=10$ and that we compute the test error from $l=1000$ examples. Use the Hoeffding inequality to bound the probability that $R(h)$ will be in the interval $\left(R_{\mathcal{S}^{l}}(h)-1, R_{\mathcal{S}^{l}}(h)+1\right)$?
b) What is the minimal number of the test examples l which we need to collect in order to guarantee that $R(h)$ is in the interval $\left(R_{\mathcal{S}^{l}}(h)-\varepsilon, R_{\mathcal{S}^{l}}(h)+\varepsilon\right)$ with probability γ at least? Write l as a function of ε, n and γ.
Assignment 3. Let $\mathcal{X}=[a, b] \subset \mathbb{R}, \mathcal{Y}=\{+1,-1\}, \ell\left(y, y^{\prime}\right)=\llbracket y \neq y^{\prime} \rrbracket, p(x \mid y=$ $+1)=p(x \mid y=-1)$ be uniform distributions on \mathcal{X} and $p(y=+1)=0.8$. Consider learning algorithm which for a given training set $\mathcal{T}^{m}=\left\{\left(x^{1}, y^{1}\right), \ldots,\left(x^{m}, y^{m}\right)\right\}$ returns the strategy

$$
h_{m}(x)=\left\{\begin{aligned}
y^{j} & \text { if } x=x^{j} \text { for some } j \in\{1, \ldots, m\} \\
-1 & \text { otherwise }
\end{aligned}\right.
$$

a) Show that the empirical risk $R_{\mathcal{T}^{m}}\left(h_{m}\right)=\frac{1}{m} \sum_{i=1}^{m} \ell\left(y^{i}, h_{m}\left(x^{i}\right)\right)$ equals 0 with probability 1 for any finite m.
b) Show that the expected risk $R\left(h_{m}\right)=\mathbb{E}_{(x, y) \sim p}\left(\ell\left(y, h_{m}(x)\right)\right.$ equals 0.8 for any finite m.

