STATISTICAL MACHINE LEARNING (WS2022/23) SEMINAR 2

Assignment 1. We are given a prediction strategy $h: \mathcal{X} \to \mathcal{Y} = \{1, \ldots, Y\}$ assigning observations $x \in \mathcal{X}$ into one of Y classes. Our task is to estimate the true risk $R(h) = \mathbb{E}_{(x,y)\sim p}\ell(y,h(x))$ where $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ is some application specific loss function. To this end, we collect a set of examples $\mathcal{S}^{l} = \{(x^{i}, y^{i}) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \ldots, l\}$ drawn i.i.d. from the distribution p(x, y) and compute the test risk

$$R_{\mathcal{S}^{l}}(h) = \frac{1}{l} \sum_{i=1}^{l} \ell(y^{i}, h(x^{i})) .$$

We want to construct the confidence interval such that

 $R(h) \in (R_{\mathcal{S}^l}(h) - \varepsilon, R_{\mathcal{S}^l}(h) + \varepsilon) \quad \text{holds with probability } \gamma \in (0, 1)$ (1)

The number of examples l, the precision parameter ε and the confidence level γ are three interdependent variables, i.e., fixing two of the variables allows to compute the third one.

a) Use the Hoeffding's inequality to derive a formula to compute ε as a function of l and γ such that (1) holds.

b) Use the Hoeffding's inequality to derive a formula to compute l as a function of ε and γ such that (1) holds.

c) Instantiate the formulas derived in a) and b) for the following loss functions:

(1)
$$\ell(y, y') = [\![y \neq y']\!]$$

(2) $\ell(y, y') = |y - y'|$
(3) $\ell(y, y') = [\![|y - y'| \le K]\!]$ where $K < Y$

d) Assume that use the loss $\ell(y, y') = [\![y \neq y']\!]$. Plot the precision ε as a function of the number of examples $l \in \{10, 100, \dots, 100000\}$ for confidence levels $\gamma \in \{0.9, 0.95, 0.99\}$.

e) Assume that we use the loss $\ell(y, y') = [\![y \neq y']\!]$. What is the minimal number of examples l we need to use to have a guarantee that the test risk will approximate the true risk with error $\pm 1\%$ at most?

Assignment 2. Let \mathcal{X} be a set of input observations and $\mathcal{Y} = \mathcal{A}^n$ a set of sequences of length n defined over a finite alphabet \mathcal{A} . Let $h: \mathcal{X} \to \mathcal{Y}$ be a prediction rule that for each $x \in \mathcal{X}$ returns a sequence $h(x) = (h_1(x), \ldots, h_n(x))$. Assume that we

want to measure the prediction accuracy of h(x) by the expected Hamming distance $R(h) = \mathbb{E}_{(x,y_1,\ldots,y_n)\sim p}(\sum_{i=1}^{n} \llbracket h_i(x) \neq y_i \rrbracket)$ where $p(x,y_1,\ldots,y_n)$ is a p.d.f. defined over $\mathcal{X} \times \mathcal{Y}$. As the distribution $p(x,y_1,\ldots,y_n)$ is unknown we estimate R(h) by the test error

$$R_{\mathcal{S}^{l}}(h) = \frac{1}{l} \sum_{j=1}^{l} \sum_{i=1}^{n} [\![y_{i}^{j} \neq h_{i}(x^{j})]\!]$$

where $S^l = \{(x^i, y_1^i, \dots, y_n^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \dots, l\}$ is a set of examples drawn from i.i.d. random variables with the distribution $p(x, y_1, \dots, y_n)$.

a) Assume that the sequence length is n = 10 and that we compute the test error from l = 1000 examples. Use the Hoeffding inequality to bound the probability that R(h) will be in the interval $(R_{S^l}(h) - 1, R_{S^l}(h) + 1)$?

b) What is the minimal number of the test examples l which we need to collect in order to guarantee that R(h) is in the interval $(R_{S^l}(h) - \varepsilon, R_{S^l}(h) + \varepsilon)$ with probability γ at least? Write l as a function of ε , n and γ .

Assignment 3. Let $\mathcal{X} = [a, b] \subset \mathbb{R}$, $\mathcal{Y} = \{+1, -1\}$, $\ell(y, y') = [[y \neq y']]$, $p(x \mid y = +1) = p(x \mid y = -1)$ be uniform distributions on \mathcal{X} and p(y = +1) = 0.8. Consider learning algorithm which for a given training set $\mathcal{T}^m = \{(x^1, y^1), \dots, (x^m, y^m)\}$ returns the strategy

$$h_m(x) = \begin{cases} y^j & \text{if } x = x^j \text{ for some } j \in \{1, \dots, m\} \\ -1 & \text{otherwise} \end{cases}$$

a) Show that the empirical risk $R_{\mathcal{T}^m}(h_m) = \frac{1}{m} \sum_{i=1}^m \ell(y^i, h_m(x^i))$ equals 0 with probability 1 for any finite m.

b) Show that the expected risk $R(h_m) = \mathbb{E}_{(x,y)\sim p}(\ell(y, h_m(x)))$ equals 0.8 for any finite m.