STATISTICAL MACHINE LEARNING (WS2021/22) SEMINAR 1

Assignment 1. Assume a prediction problem with a scalar observation $\mathcal{X} = \mathbb{R}$, two classes $\mathcal{Y} = \{-1, +1\}$ and 0/1-loss $\ell(y, y') = [\![y \neq y']\!]$. The observations of both classes are generated according to the Normal distribution, i.e.

$$p(x,y) = p(y) \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu_y)^2\right), \qquad y \in \mathcal{Y},$$

where p(y) is the prior distribution of the hidden state, $\sigma_+, \sigma_- \in \mathbb{R}_+$ are the standard deviations and $\mu_+, \mu_\in \in \mathbb{R}$ are the mean values.

a) Assume $\mu_{-} < \mu_{+}$ and $\sigma_{+} = \sigma_{-}$. Show that under this assumption the optimal prediction strategy is the thresholding rule

$$h(x) = \begin{cases} -1 & \text{if } x < \theta, \\ +1 & \text{if } x \ge \theta, \end{cases}$$

parametrized by the scalar $\theta \in \mathbb{R}$. Write an explicit formula for computing θ .

b) Show what is the optimal prediction strategy in case when $\mu_{+} = \mu_{-}$ and $\sigma_{+} \neq \sigma_{-}$.

Assignment 2. Consider the following probabilistic model for real valued sequences $x = (x_1, \ldots, x_n), x_i \in \mathbb{R}$ of fixed length n. Each sequence is a combination of a leading part $i \leq k$ and a trailing part i > k. The boundary $k = 0, \ldots, n$ is random with uniform distribution. The values x_i , in the leading and trailing part are statistically independent and distributed with some probability density function $p_1(x)$ and $p_2(x)$ respectively. Altogether the distribution for pairs (\boldsymbol{x}, k) reads

$$p(\boldsymbol{x},k) = \frac{1}{n+1} \prod_{i=1}^{k} p_1(x_i) \prod_{j=k+1}^{n} p_2(x_j).$$

The densities p_1 and p_2 are known. Given a sequence x, we want to predict the boundary k.

a) Deduce the optimal predictor for the 0/1 loss, i.e $\ell(k, k') = [k \neq k']$.

b) Deduce the optimal predictor for the quadratic loss $\ell(k, k') = (k - k')^2$.

Assignment 3. We are given a prediction strategy $h: \mathcal{X} \to \mathcal{Y} = \{1, \ldots, Y\}$ assigning observations $x \in \mathcal{X}$ into one of Y classes. Our task is to estimate the true risk $R(h) = \mathbb{E}_{(x,y)\sim p}\ell(y,h(x))$ where $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ is some application specific loss function. To this end, we collect a set of examples $\mathcal{S}^{l} = \{(x^{i}, y^{i}) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \ldots, l\}$ drawn i.i.d. from the distribution p(x, y) and compute the test error

$$R_{S^{l}}(h) = \frac{1}{l} \sum_{i=1}^{l} \ell(y^{i}, h(x^{i})) \; .$$

What is the minimal number of test examples l we need to collect in order to have a guarantee that the true risk R(h) is inside the interval $(R_{S^l}(h) - \varepsilon, R_{S^l}(h) + \varepsilon)$ with probability $\gamma \in (0, 1)$ for some predefined $\varepsilon > 0$?

a) Use Hoeffding's inequality to derive a formula to compute l as a function of ε and γ .

b) Assume the loss defined as $\ell(y, y') = [[|y - y'| > 5]]$. Evaluate l for $\varepsilon = 0.01$ and $\gamma \in \{0.90, 0.95, 0.99\}$. Give an interpretation of the expectation of the loss.

c) Solve the problem b) in case that the loss is the mean absolute error, $\ell(y, y') = |y - y'|$. Evaluate l for $\varepsilon = 1$, Y = 100 and $\gamma \in \{0.90, 0.95, 0.99\}$.

d) How do the formulas depend on the particular loss function?

Assignment 4. Let us consider the family of linear classifiers $h \in \mathcal{H}$ defined by

$$y = h(\boldsymbol{x}; \boldsymbol{w}, b) = \operatorname{sign}(\boldsymbol{x}^T \boldsymbol{w} - b),$$
(1)

where $x \in \mathbb{R}^n$ denotes a feature vector and $y = \pm 1$ denotes the binary class. The predictors are parametrised by the vector $w \in \mathbb{R}^n$ and the scalar $b \in \mathbb{R}$. Given training data $\mathcal{T} = \{(x_i, y_i) \mid i = 1, 2, ..., m\}$, we want to find the predictor that minimises the empirical risk on the training data, i.e.

$$\mathbb{R}_{\mathcal{T}}(h) = \frac{1}{|\mathcal{T}|} \sum_{(x,y)\in\mathcal{T}} \ell(y,h(\boldsymbol{x})) \to \min_{h\in\mathcal{H}},$$

for the 0/1 loss $\ell(y, y') = [[y \neq y']]$.¹

a) Consider the loss for a single example $(x, y) \in \mathcal{T}$ as a function of the classifier parameters, i.e. $f(w, b) = \ell(y, h(x; w, b))$. What type of function is it? Can we minimise it by gradient descent? Conclude that the empirical risk $\mathbb{R}_{\mathcal{T}}(h)$ can not be minimised by gradient descent w.r.t. w and b.

b) Suppose, we know that there is a classifier $h^* \in \mathcal{H}$, with zero empirical risk on the training data. Give an algorithm that finds such a predictor.

c) Suppose now, no such predictor exists. How can we resolve the problem we encountered in a)?

 $^{{}^{1}[}e]$ denotes the Iverson bracket with value 1 if the expression in the brackets is true and 0 otherwise.