STATISTICAL MACHINE LEARNING (WS2022) SEMINAR 9

Assignment 1. (Gambler's ruin) Consider a random walk on the set $L=\{0,1,2, \ldots, a\}$ starting in some point $x \in L$. The position jumps by either ± 1 in each time step (with equal probabilities). The walk ends if either of the boundary states $0, a$ is hit. Compute the probability $u(x)$ to finish in state a if the process starts in state x.
Hints:
(1) What are the values of $u(0)$ and of $u(a)$?
(2) Find a difference equation for $u(x), 0<x<a$ by relating it with $u(x-1)$ and $u(x+1)$.
(3) Translate the difference equation into a relation between the successive differences $u(x+1)-u(x)$ and $u(x)-u(x-1)$.
(4) Deduce that the solution is a linear function of x and find its coefficients from the boundary conditions $u(0)$ and $u(a)$.

Assignment 2. Let us consider a Markov chain model for sequences $s=\left(s_{1}, \ldots, s_{n}\right)$ of length n with states $s_{i} \in K$ from a finite set K. Its joint probability distribution is given by

$$
p(s)=p\left(s_{1}\right) \prod_{i=2}^{n} p\left(s_{i} \mid s_{i-1}\right)
$$

The conditional probabilities $p\left(s_{i} \mid s_{i-1}\right)$ and the marginal probability $p\left(s_{1}\right)$ for the first element are known. Let $A \subset K$ be a subset of states and let $\mathcal{A}=A^{n}$ denote the set of all sequences s with $s_{i} \in A$ for all $i=1, \ldots, n$.
a) Find an efficient algorithm for computing the most probable sequence in \mathcal{A}.
b) Find an efficient algorithm for computing the probability $\mathbb{P}(\mathcal{A})=\sum_{s \in \mathcal{A}} p(s)$.

Assignment 3. Let us consider the following matching problem. Given a sequence $x=\left(x_{1}, \ldots, x_{m}\right)$ of points $x_{i} \in \mathbb{R}^{2}$ and another sequence $y=\left(y_{1}, \ldots, y_{n}\right)$ of points in the same space, we want to find an optimal matching between them. (Notice that the sequences may have different length).

A matching τ is encoded as a path in the graph (V, E), with nodes $V=\{(i, j) \mid i=$ $1, \ldots, m, j=1, \ldots, n\}$ and edges connecting each node (i, j) with nodes $(i+1, j)$, $(i, j+1)$ and $(i+1, j+1)$. The path should start in $(1,1)$ and end in (m, n). The cost of the matching τ is the sum of costs of the traversed nodes, where the cost for the node (i, j) is the Euclidean distance $\left\|x_{i}-y_{j}\right\|$.

Explain how to find the optimal matching for a pair of point sequences x and y by dynamic programming. What is the run time complexity of your algorithm?

Assignment 4. Consider a hidden Markov model

$$
p(x, s)=p\left(s_{1}\right) \prod_{i=2}^{n} p\left(s_{i} \mid s_{i-1}\right) \prod_{i=1}^{n} p\left(x_{i} \mid s_{i}\right)
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ is a sequence of features and $s=\left(s_{1}, \ldots, s_{n}\right)$ is a sequence of hidden states, with values s_{i} from a finite set K. Given a sequence of features x we want to predict the sequence of hidden states that has generated x.
a) The predictor should minimise the expected loss

$$
R(x, h)=\sum_{s \in K^{n}} p(x, s) \ell(s, h(x)),
$$

where $\ell\left(s, s^{\prime}\right)$ is the Hamming distance between sequences s and s^{\prime}, i.e.

$$
\ell\left(s, s^{\prime}\right)=\sum_{i=1}^{n} \llbracket s_{i} \neq s_{i}^{\prime} \rrbracket .
$$

Show that the optimal predictor for this loss is given by

$$
s_{i}^{*}=\underset{k \in K}{\arg \max } p\left(s_{i}=k \mid x\right),
$$

i.e. predicting the sequence of most probable states.
b) The predictor in a) requires to compute the marginal posterior probabilities $p\left(s_{i}=\right.$ $k \mid x)$ for all positions i and all states $k \in K$. Show how to compute them for an HMM by performing dynamic matrix-vector multiplications from left to right and from right to left and combining the results.
Hint: Your algorithm will in fact compute the probabilities $p\left(s_{i}=k, x\right)$. The required normalisation for the posterior probabilities $p\left(s_{i}=k \mid x\right)$ can be postponed and done in the last step.

