STATISTICAL MACHINE LEARNING (WS2022) SEMINAR 8

Assignment 1. Let $x \in K^{n}$ be a random vector with components x_{i} from a finite set K. Consider two distributions $p(x)$ and $q(x)$ that factorise w.r.t. the components of x, i.e. $p(x)=\prod_{i=1}^{n} p_{i}\left(x_{i}\right)$ and similarly $q(x)=\prod_{i=1}^{n} q_{i}\left(x_{i}\right)$. Prove that their KLdivergence is the sum of KL-divergences of their marginal distributions, i.e.

$$
D_{K L}(q(x) \| p(x))=\sum_{i=1}^{n} D_{K L}\left(q_{i}\left(x_{i}\right) \| p_{i}\left(x_{i}\right)\right)
$$

Assignment 2. Let X be a categorical random variable with values in $\mathcal{K}=\{1, \ldots, K\}$ and probabilities $p_{k}, k \in \mathcal{K}$. Solve the following optimisation tasks
(a) $\sum_{k \in \mathcal{K}} \alpha_{k} \log p_{k} \rightarrow \max _{\alpha}$
(b) $\sum_{k \in \mathcal{K}} p_{k} \log \alpha_{k} \rightarrow \max _{\alpha}$
(c) $\sum_{k \in \mathcal{K}} \alpha_{k} \log \frac{\alpha_{k}}{p_{k}} \rightarrow \min _{\alpha}$
under the constraints $\alpha_{k} \geqslant 0, \forall k \in \mathcal{K}$ and $\sum_{k \in \mathcal{K}} \alpha_{k}=1$.
Assignment 3. Let us consider a mixture of distributions from an exponential family, i.e.

$$
p(x)=\sum_{k=1}^{K} \pi_{k} e^{\left\langle\phi(x), \eta_{k}\right\rangle-A\left(\eta_{k}\right)}
$$

where $\eta=\left(\eta_{1}, \ldots, \eta_{K}\right)$ is the tuple of natural parameters and $\pi=\left(\pi_{1}, \ldots, \pi_{K}\right)$ is the tuple of mixture weights. Suppose you want to estimate η and π from a training set $\mathcal{T}^{m}=\left\{x^{j} \mid j=1, \ldots, m\right\}$ by using the EM algorithm. In the E-step you will need to compute the optimal auxiliary variables

$$
\alpha_{x}(k)=p\left(k \mid x ; \eta^{(t)}, \pi^{(t)}\right), \quad \forall x \in \mathcal{T}^{m}
$$

for the current estimate of η and π. In the M-step you will need to solve the optimisation task

$$
\frac{1}{m} \sum_{x \in \mathcal{T}^{m}} \sum_{k=1}^{K} \alpha_{x}(k)\left[\left\langle\phi(x), \eta_{k}\right\rangle-A\left(\eta_{k}\right)+\log \pi_{k}\right] \rightarrow \max _{\eta, \pi}
$$

a) Show that the task decomposes into independent optimisation tasks for η and π. Find the optimal tuple of mixture weights π.
b) Show that the optimisation task w.r.t. η further decomposes into independent tasks for each η_{k}. Show that each of them is an ML estimate for the respective η_{k} with the statistics

$$
\psi_{k}=\frac{1}{m} \sum_{x \in \mathcal{T}^{m}} \alpha_{x}(k) \phi(x) .
$$

Assignment 4. Given a small training set $\mathcal{T}^{m}=\left\{x_{i} \in \mathbb{R} \mid i=1, \ldots, m\right\}$ we want to estimate the mean of a normal distribution $\mathcal{N}(\mu, 1)$. We know that the unknown μ is close to μ_{0}. Therefore, we want to apply Bayesian inference and set the prior distribution for μ to be a normal distribution centred at μ_{0}, i.e. $p(\mu)=\mathcal{N}\left(\mu_{0}, 1\right)$.

Show that the posterior distribution $p\left(\mu \mid \mathcal{T}^{m}\right) \propto p\left(\mathcal{T}^{m} \mid \mu\right) p(\mu)$ is also a Gaussian. Find its center (expectation).

