Statistical Machine Learning (BE4AM33SSU)
Lecture 11: Markov Random Fields

Czech Technical University in Prague

¢ Markov Random Fields & Gibbs Random Fields
¢ Approximated Inference for MRFs

¢ (Generative) Parameter learning for MRFs



A ‘ ()
1. Motivation: Two Examples from Computer Vision @
2/11

Example 1 (Image segmentation). Consider the following image segmentation model, where
z: V — R3 denotes an image and s: V — K denotes its segmentation (K is the set of
segment labels)

s):Hp(s eXp[ZuZ ] and p(x|s) Hp x;|s;)

1€V eV eV

This model is pixel-wise independent and, consequently, so is the inference.

We want to take into account that:
® neighbouring pixels belong more often than not to the same segment,

¢ the segment boundaries are in most places smooth, . . .

Hence, we consider a more complex prior model for segmentations

eXp {Zuz Z Uz’j(siasj)}a

eV {i,j}€E

p(s) =

where E are edges connecting neighbouring pixels in V.
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Example 2 (Motion Flow). Given two images z,z": V — R? from a video, determine the
motion flow, i.e. find a displacement vector v; € Z? for each pixel i € V.

¢ projections of the same 3D points look similar in z and z’.

¢ 3D points projected onto neighbouring image pixels move more often than not
coherently.

¢ We consider a discriminative model p(v|x,z") since we do not intend to model the
Image appearance.

polea’) = go—exp[= Y lmi—ah P —a 3 ool
1€V {i,j}€E
The first term in the model can be generalised, by using f(z.,) instead of x;, where
f(z.,) € R™ denotes a feature vector computed by a CNN for the image patch c; centered at

pixel 2 € D.

Such models can be generalised for stereo cameras and combined with segmentation
approaches.
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Let (V, E) denote an undirected graph and let s ={s; | i € V'} be a field of random variables
indexed by the nodes of the graph and taking values from a finite set K. (Given a set of
nodes C' C V, we denote the field configuration on it by s¢)

Definition 1. A joint probability distribution p(s) is a Gibbs Random Field on the graph
(V, E) if it factorises over the the nodes and edges, i.e.

(V,E): 3x4 grid, grey bars: variables s;, circles: values from K, green: a labelling s
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A Gibbs Random Field w.r.t. the graph (V. FE) is also T oals: A
a Markov Random Field, because it has the following | o—o—0--@-—0—0—0—0
Markov property:  O—O—O——-O—O—0—0)
OO O—O—O—0)
p(sa,88]80) =p(salsc)p(ss|ss) O ,\?i.iif\ A A ,Di
 O—O0—0+H0+O0—0—0—0 |

holds for any subsets A, B C V and a separating set C'. == A S :
The following tasks for MRFs/GRFs are NP-complete

¢ Computing the most probable labelling s* € argmaxp(s).
seKV

¢ Computing the normalisation constant

Z(u) = Z eXp[Zui(si)qL Z uij(si,sj)].

scKV eV {i,j}€E

The same holds for computing marginal probabilities of p(s).
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Consider logp(s), replace u — —u. The task reads then

ZUZ(SZ)—I- Z uz-j(sz-,sj)—> min

, KV
eV {i,j}€FE s€

The variables s;, i € V' are boolean: the pseudo-Boolean functions u;, u;; can be written as
multi-linear polynomials. In particular, the functions w;;(s;,s;) can be written as

/ /
uij(si,sj) = —QOéijSiSj + a;S; + biSj = Oéij|8z' — Sj| ‘|—G/Z'Sz' + bij

up to additive constants. Thus, after re-defining the unary functions u;(s;), the task reads as

s* = argmin Z Ozij\s,,;—st—Zﬁisi

seKV {i,j}€E eV
= argmin Z Qij|si — s + Zﬁisi—l- Z\ﬂi\(l—sz‘),
seKV {i,j}€E eV eV

where V., ={ieV |5, >0} and V_ =V \ V.. This is a s-t MinCut-problem!
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The binary labels s; = 0,1 encode the partition set to which 7 € V' is assigned.

¢ the task can be solved in polynomial time via MinCut — MaxFlow duality if all edge
weights are non-negative, i.e. a;; >0, V{i,j} € E,

¢ if some of the a-s are negative: apply approximation algorithms, e.g. relax the discrete
variables to s; € [0,1], consider an LP-relaxation of the task and solve the LP task
e.g. by Tree-Reweighted Message Passing (Kolmogorov, 2006)
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Approximation algorithms for the general case, when s; € K

:Zui(si)+ Z u;i(s;,8;) — min

. KV
icV {i,j}€E s€

Move making algorithms: Construct a sequence of labellings s(*) with decreasing values of
the objective function by

¢ Defining neighbourhoods N(s) C KV such that the restricted task

argmm g uw 82,8] + g ’u,,L

SN figrem i€V

is solvable in polynomial time for every s'.

¢ lterating

(Hl) c argmln Z uw sz,s] + ZU’L
seN(s(t)) {i,j}eFE eV

until no further improvement possible.
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a-Expansions (Boykov et al., 2001)

¢ Define the neighbourhoods by choosing a label @ € K and setting
No(s)={se K" | s;=aif s; # 5}}.

Notice that [NV, (s")] ~2Y.

argmm g Um sz,sj + E uz

s€Nals) (5 j1eE i€V

® The restricted task

1
can be encoded as labelling problem with boolean variables y; = {O
® It can be solved by MinCut-MaxFlow if
Uij(k, k/) —I—Uij(()é,()é) < Uij(()é, k'/) —|—uij(]€,0é)

holds for all pairwise functions wu;; and all k,k' € K.

ifSZ':Oé

9/11
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5. Learning parameters of MRFs

Learning task: Given i.i.d. training data 7™ ={s*€ KV |/=1,...,m}, estimate the
parameters u;, u;; of the MRF.

The maximum likelihood estimator reads

Sm:{ L wig(ssh) + Zui(sf)} —log Z(u) — max.

logpu(T™) = max
(=1 {i,j}€E eV v

It is intractable: the objective function is concave in u, but we can compute neither log Z(u)
nor its gradient (in polynomial time).

We can use the pseudo-likelihood estimator (Besag, 1975) instead. It is based on the
following observation

¢ Let N, denote the neighbouring nodes of i € V.

¢ We can compute the conditional distributions

JEN
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The pseudo-likelihood of an single example s € 7™ is defined by
Ly(u) =) logpu(si | sn;)

eV

=2 Z w;i(Si,5;) +Zu@(sz) — Zlog Z exp {Uz(Sz) + Z Uz‘j(Sz',Sj)}

{i,j}eFE 1€V =av4 $; €K jeN;

The pseudo-likelihood estimator is
® a concave function of the parameters w,
¢ tractable, i.e. both L,(u,7™) and its gradient are easy to compute,

¢ consistent.
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