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� Markov Random Fields & Gibbs Random Fields

� Approximated Inference for MRFs

� (Generative) Parameter learning for MRFs
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1. Motivation: Two Examples from Computer Vision

Example 1 (Image segmentation). Consider the following image segmentation model, where
x : V → R3 denotes an image and s : V →K denotes its segmentation (K is the set of
segment labels)

p(s) =
∏
i∈V

p(si) =
1

Z(u)
exp
[∑
i∈V

ui(si)
]

and p(x |s) =
∏
i∈V

p(xi |si)

This model is pixel-wise independent and, consequently, so is the inference.

We want to take into account that:

� neighbouring pixels belong more often than not to the same segment,

� the segment boundaries are in most places smooth, . . .

Hence, we consider a more complex prior model for segmentations

p(s) =
1

Z(u)
exp
[∑
i∈V

ui(si)+
∑
{i,j}∈E

uij(si,sj)
]
,

where E are edges connecting neighbouring pixels in V .

http://cmp.felk.cvut.cz


3/11
1. Motivation: Two Examples from Computer Vision

Example 2 (Motion Flow). Given two images x,x′ : V → R3 from a video, determine the
motion flow, i.e. find a displacement vector vi ∈ Z2 for each pixel i ∈ V .

� projections of the same 3D points look similar in x and x′.

� 3D points projected onto neighbouring image pixels move more often than not
coherently.

� We consider a discriminative model p(v |x,x′) since we do not intend to model the
image appearance.

p(v |x,x′) = 1

Z(x,x′)
exp
[
−
∑
i∈V

‖xi−x′i+vi‖
2−α

∑
{i,j}∈E

‖vi−vj‖2
]

The first term in the model can be generalised, by using f(xci) instead of xi, where
f(xci) ∈ Rn denotes a feature vector computed by a CNN for the image patch ci centered at
pixel i ∈D.

Such models can be generalised for stereo cameras and combined with segmentation
approaches.

http://cmp.felk.cvut.cz
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2. Markov Random Fields & Gibbs Random Fields

Let (V,E) denote an undirected graph and let s= {si | i ∈ V } be a field of random variables
indexed by the nodes of the graph and taking values from a finite set K. (Given a set of
nodes C ⊂ V , we denote the field configuration on it by sC)
Definition 1. A joint probability distribution p(s) is a Gibbs Random Field on the graph
(V,E) if it factorises over the the nodes and edges, i.e.

p(s) =
1

Z(u)
exp
[∑
i∈V

ui(si)+
∑
{i,j}∈E

uij(si,sj)
]
.

(V,E): 3x4 grid, grey bars: variables si, circles: values from K, green: a labelling s

http://cmp.felk.cvut.cz
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2. Markov Random Fields & Gibbs Random Fields

A Gibbs Random Field w.r.t. the graph (V,E) is also
a Markov Random Field, because it has the following
Markov property:

p(sA,sB |sC) = p(sA | sC)p(sB | sS)

holds for any subsets A,B ⊂ V and a separating set C.

A C B

The following tasks for MRFs/GRFs are NP-complete

� Computing the most probable labelling s∗ ∈ argmax
s∈KV

p(s).

� Computing the normalisation constant

Z(u) =
∑
s∈KV

exp
[∑
i∈V

ui(si)+
∑
{i,j}∈E

uij(si,sj)
]
.

The same holds for computing marginal probabilities of p(s).

http://cmp.felk.cvut.cz
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3. Computing the most probable labelling of an MRF:
Boolean case

Consider logp(s), replace u→−u. The task reads then∑
i∈V

ui(si)+
∑
{i,j}∈E

uij(si,sj)→ min
s∈KV

The variables si, i ∈ V are boolean: the pseudo-Boolean functions ui, uij can be written as
multi-linear polynomials. In particular, the functions uij(si,sj) can be written as

uij(si,sj) =−2αijsisj+aisi+ bisj = αij|si−sj|+a′isi+ b′jsj

up to additive constants. Thus, after re-defining the unary functions ui(si), the task reads as

s∗ = argmin
s∈KV

∑
{i,j}∈E

αij|si−sj| +
∑
i∈V

βisi

= argmin
s∈KV

∑
{i,j}∈E

αij|si−sj| +
∑
i∈V+

βisi+
∑
i∈V−

|βi|(1−si),

where V+ = {i ∈ V | βi > 0} and V− = V \V+. This is a s-t MinCut-problem!

http://cmp.felk.cvut.cz
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3. Computing the most probable labelling of an MRF:
Boolean case

t

s

The binary labels si = 0,1 encode the partition set to which i ∈ V is assigned.

� the task can be solved in polynomial time via MinCut – MaxFlow duality if all edge
weights are non-negative, i.e. αij > 0, ∀{i, j} ∈ E,

� if some of the α-s are negative: apply approximation algorithms, e.g. relax the discrete
variables to si ∈ [0,1], consider an LP-relaxation of the task and solve the LP task
e.g. by Tree-Reweighted Message Passing (Kolmogorov, 2006)

http://cmp.felk.cvut.cz
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4. Computing the most probable labelling: general case

Approximation algorithms for the general case, when si ∈K

u(s) =
∑
i∈V

ui(si)+
∑
{i,j}∈E

uij(si,sj)→ min
s∈KV

Move making algorithms: Construct a sequence of labellings s(t) with decreasing values of
the objective function by

� Defining neighbourhoods N (s)⊂KV such that the restricted task

argmin
s∈N (s′)

∑
{i,j}∈E

uij(si,sj) +
∑
i∈V

ui(si)

is solvable in polynomial time for every s′.

� Iterating
s(t+1) ∈ argmin

s∈N (s(t))

∑
{i,j}∈E

uij(si,sj) +
∑
i∈V

ui(si)

until no further improvement possible.

http://cmp.felk.cvut.cz
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4. Computing the most probable labelling: general case

α-Expansions (Boykov et al., 2001)

� Define the neighbourhoods by choosing a label α ∈K and setting

Nα(s′) =
{
s ∈KV

∣∣ si = α if si 6= s′i
}
.

Notice that |Nα(s′)| ∼ 2V .

� The restricted task
argmin
s∈Nα(s′)

∑
{i,j}∈E

uij(si,sj) +
∑
i∈V

ui(si)

can be encoded as labelling problem with boolean variables yi =
{
1 if si = α

0 if si = s′i

� It can be solved by MinCut-MaxFlow if

uij(k,k
′)+uij(α,α)6 uij(α,k

′)+uij(k,α)

holds for all pairwise functions uij and all k,k′ ∈K.

http://cmp.felk.cvut.cz
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5. Learning parameters of MRFs

Learning task: Given i.i.d. training data T m = {s` ∈KV | `= 1, . . . ,m}, estimate the
parameters ui, uij of the MRF.

The maximum likelihood estimator reads

logpu(T m) =
1

m

m∑
`=1

[ ∑
{i,j}∈E

uij(s
`
i,s

`
j) +

∑
i∈V

ui(s
`
i)
]
− logZ(u)→ max

ui,uij
.

It is intractable: the objective function is concave in u, but we can compute neither logZ(u)
nor its gradient (in polynomial time).

We can use the pseudo-likelihood estimator (Besag, 1975) instead. It is based on the
following observation

� Let Ni denote the neighbouring nodes of i ∈ V .

� We can compute the conditional distributions

p(si | sV \i)
!
= p(si | sNi)∝ e

ui(si)
∏
j∈Ni

euij(si,sj)

http://cmp.felk.cvut.cz
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5. Learning parameters of MRFs

The pseudo-likelihood of an single example s ∈ T m is defined by

Lp(u) =
∑
i∈V

logpu(si | sNi)

= 2
∑
{i,j}∈E

uij(si,sj)+
∑
i∈V

ui(si)−
∑
i∈V

log
∑
si∈K

exp
[
ui(si)+

∑
j∈Ni

uij(si,sj)
]

The pseudo-likelihood estimator is

� a concave function of the parameters u,

� tractable, i.e. both Lp(u,T m) and its gradient are easy to compute,

� consistent.

http://cmp.felk.cvut.cz

	First page
	cmporange 1.~Motivation: Two Examples from Computer Vision
	cmporange 1.~Motivation: Two Examples from Computer Vision
	cmporange 2.~Markov Random Fields & Gibbs Random Fields
	cmporange 2.~Markov Random Fields & Gibbs Random Fields
	cmporange 3.~Computing the most probable labelling of an MRF: Boolean case
	cmporange 3.~Computing the most probable labelling of an MRF: Boolean case
	cmporange 4.~Computing the most probable labelling: general case
	cmporange 4.~Computing the most probable labelling: general case
	cmporange 5.~Learning parameters of MRFs
	cmporange 5.~Learning parameters of MRFs
	Last page

