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Backpropagation
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1 Overview

The goal of this laboratory lab is to implement backpropagation for MultiLayer Perceptron
(MLP). Backpropagation is a method computing the gradient ∂L

∂w , which is in turn used by
optimization methods such as gradient descent in order to learn the network.

In backpropagation we divide the network into layers (modules). Each layer l is specified
by the three following messages:

• forward message zl+1 = f(zl), describing the function realized by the layer,

• backward message
∂zl+1

∂zl
, Jacobian matrix giving sensitivities of all layer outputs w.r.t.

to all of its inputs and

• parameter message
∂zl+1

∂wl
, giving sensitivities of all layer outputs w.r.t. to all layer pa-

rameters.

Let δl = ∂L
∂zl be the sensitivity of the loss w.r.t. the module input for layer l, then

δli =
∂L
∂zli

=
∑
j

δl+1
j

∂zl+1
j

∂zli
. (1)

Parameter gradient can be then computed using:

∂L
∂wl

i

=
∑
j

δl+1
j

∂zl+1
j

∂wl
i

. (2)

Your task can be summarized by the following steps:

1. Implement all messages for linear, ReLU, and softmax layers as well as for the multinom-
inal cross-entropy loss.

2. Implement the backpropagation.

3. Train MLP classifier using Stochastic Gradient Descent (SGD) on an artificial spiral
dataset (see Figure ??).

4. Modify your layer implementations so these can cope with numerical instabilities (e.g.,
underflow, overflow, or division by zero). This involves defining a compound layer com-
bining softmax with cross-entropy loss. Train MLP classifier on the well known MNIST
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Figure 1: Spiral dataset.

Figure 2: MNIST digits sample.

dataset 1. MNIST is a database of handwritten digits (grayscale images of 28× 28 pixels)
containing 60, 000 training and 10, 000 test examples. See Figure ??.

2 Download

The sources can be downloaded from this link:
https://cw.fel.cvut.cz/wiki/_media/courses/be4m33ssu/bp_src.zip

The zip archive contains Python 3 source code. Your task is to fill in or modify files in the
mlp directory at lines indicated by comments. Run your experiments using python3 run.py.
You will need numpy and matplotlib packages (see requirements.txt).

3 Task assignment

Note that you can be awarded bonus points for computationally efficient implementation. On
the other hand, you may lose points for overly badly written code.

Assignment 1 (5 points + 2 bonus)

• Implement all messages in LinearLayer, ReLULayer, SoftmaxLayer and LossCrossEntropy
classes. Note that backward messages are not implemented in separate methods. It is more
efficient to compute the δl’s (delta methods) directly as the Jacobian matrices represent-
ing the backward messages are often sparse. Similarly, there is no method dedicated to

1http://yann.lecun.com/exdb/mnist/
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compute the parameter message, instead, you will find grad method computing the gradient
of loss w.r.t. all layer parameters. Details are given in the corresponding comments.

• Implement the gradient method in MLP class performing the actual backpropagation.

• Train an MLP classifier on the spiral dataset using experiment spiral as a base for
your experiments. Use the MLP architecture as well as parameters given in the source
file. The report will contain figures showing convergence for three settings of the learning
rate: α ∈ {0.2, 1, 5}. Discuss.

Hint: You might want to use a simpler dataset such as XOR for debugging purposes. XOR
contains four samples only while it is not linearly separable, which makes it an ideal candidate
for early experiments. Use experiment_XOR to get started.
Hint: Use matrix operations such as numpy.dot() wherever possible to make computations effi-
cient. Use assertions to check correct tensor sizes and/or numerical problems (numpy.isnan(),
numpy.isinf() or numpy.seterr() might help).

Assignment 2 (2 points)

• Give forward and backward messages for a compound layer composed of the softmax layer:

pk(s) =
esk∑K
c=1 e

sc
(3)

and multinominal cross-entropy loss:

ℓ = −
K∑
k=1

tk log(pk), (4)

where s = (s1, . . . , sK), p = (p1, . . . , pK), k ∈ {1, . . . ,K} are softmax inputs and outputs,
t = (t1, . . . , tK) a one-hot encoded vector of targets and ℓ the value of loss for a single
sample.

• Show that softmax is invariant to shift in inputs, i.e., pk(s
′) = pk(s) where s′k = sk + c

for k ∈ {1, . . . ,K} and c ∈ R.

Remark: To prevent overflows and underflows in softmax, max(s) is often subtracted from all
elements of its input s. Subtracting max(s) makes all elements of s non-positive which prevents
overflow. At least one element becomes zero which makes denominator greater or equal to one.

Assignment 3 (5 points + 1 bonus)

• Reimplement softmax according to the previous remark.

• Implement the compound layer (LossCrossEntropyForSoftmaxLogits class) from As-
signment 2 and use it instead of separate softmax and loss layers.

• Train a deeper architecture as defined in experiments_MNIST for MNIST dataset.

• Give a plot showing the development of mean weight amplitude (mean absolute value) for
each linear layer over training epochs. Show values normalized w.r.t. the initial mean
amplitude. Discuss.
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Remark: Note that you should use the compound layer for training only. In the network evalua-
tion phase (MLP.propagate()) you should use standard softmax layer to get actual predictions.
These two regimes are facilitated by output_layers parameter in MLP constructor as well as by
the MLP.propagate() method’s parameter of the same name.
Remark: The size of the network and other parameters in experiment_MNIST are chosen in
order to cause numerical instability2 for the näıve implementation from Assignment 1. You
should be able to get reasonable and even higher accuracy using much fewer neurons in the
hidden layer still.

2Note that the numerical instability might not demonstrate itself in some cases due to specific implementation
details in your code.
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