Statistical Machine Learning (BE4M33SSU)
 Lecture 11: Hidden Markov Models
 Czech Technical University in Prague

- Hidden Markov Models
- Inference algorithms for HMMs
- Parameter learning for HMMs

1. Hidden Markov Models

- Let $s=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ denote a sequence of hidden states from a finite set K.
- Let $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ denote a sequence of features from some feature space \mathcal{X}.

Definition 1. A joint p.d. on $\mathcal{X}^{n} \times K^{n}$ is a Hidden Markov model if
(a) the prior p.d. $p(s)$ for the sequences of hidden states is a Markov model, and
(b) the conditional distribution $p(\boldsymbol{x} \mid \boldsymbol{s})$ for the feature sequence is independent, i.e.

$$
p(\boldsymbol{x} \mid \boldsymbol{s})=\prod_{i=1}^{n} p\left(x_{i} \mid s_{i}\right)
$$

The joint model is given by

$$
p(\boldsymbol{x}, \boldsymbol{s})=p\left(s_{1}\right) \prod_{i=2}^{n} p\left(s_{i} \mid s_{i-1}\right) \prod_{i=1}^{n} p\left(x_{i} \mid s_{i}\right)
$$

1. Hidden Markov Models

Example 1 (Text recognition, OCR).

$\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ - sequence of images with characters,

- $\boldsymbol{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ - sequence of alphabetic characters,
- $p\left(s_{i} \mid s_{i-1}\right)$ - language model,
- $p\left(x_{i} \mid s_{i}\right)$ - appearance model for characters.

2. Hidden Markov Models

Example 2 (Skin layer segmentation, OCT).

$\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ - sequence of image columns (features),
$\boldsymbol{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ - sequence of boundary height values,

- $p\left(s_{i} \mid s_{i-1}\right)$ - boundary model,
- $p\left(x_{i} \mid s_{i}\right)$ - appearance model for image columns.

3. Inference algorithms for HMMs

How to find the most probable sequence of hidden states given the sequence of features \boldsymbol{x}

$$
s^{*} \in \underset{s \in K^{n}}{\arg \max } p\left(s_{1}\right) \prod_{i=2}^{n} p\left(s_{i} \mid s_{i-1}\right) \prod_{i=1}^{n} p\left(x_{i} \mid s_{i}\right)
$$

Take the logarithm, with

$$
\begin{aligned}
g_{1}\left(s_{1}, x_{1}\right) & =\log \left[p\left(s_{1}\right) p\left(x_{1} \mid s_{1}\right)\right] \\
g_{i}\left(s_{i-1}, s_{i}, x_{i}\right) & =\log \left[p\left(s_{i} \mid s_{i-1}\right) p\left(x_{i} \mid s_{i}\right)\right], i=2, \ldots, n
\end{aligned}
$$

Solve the task

$$
\boldsymbol{s}^{*} \in \underset{\boldsymbol{s} \in K^{n}}{\arg \max }\left[g_{1}\left(s_{1}, x_{1}\right)+\sum_{i=2}^{n} g_{i}\left(s_{i-1}, s_{i}, x_{i}\right)\right]
$$

by dynamic programming as before for Markov models.

3. Inference algorithms for HMMs

How to compute marginal probabilities for hidden states given the sequence of features?
We want to compute $p\left(s_{i}=k, \boldsymbol{x}\right), \forall k \in K$ in some sequence position j.

$$
p\left(s_{j}, \boldsymbol{x}\right)=\sum_{s_{1} \in K} \cdots \mathcal{S}_{j} \in K \times \sum_{s_{n} \in K} p\left(s_{1}\right) p\left(x_{1} \mid s_{1}\right) \prod_{i=2}^{n}\left[p\left(s_{i} \mid s_{i-1}\right) p\left(x_{i} \mid s_{i}\right)\right]
$$

This is now more complicated, because we need to sum over the leading and trailing hidden state variables. Do this by dynamic matrix-vector multiplication from the left and from the right.

Initialise $\phi_{1}\left(s_{1}\right)=p\left(s_{1}\right) p\left(x_{1} \mid s_{1}\right)$ and $\psi_{n}\left(s_{n}\right) \equiv 1$ and recursively compute

$$
\begin{aligned}
& \phi_{i}\left(s_{i}\right)=\sum_{s_{i-1} \in K} p\left(x_{i} \mid s_{i}\right) p\left(s_{i} \mid s_{i-1}\right) \phi_{i-1}\left(s_{i-1}\right) \quad \forall s_{i} \in K \\
& \psi_{i}\left(s_{i}\right)=\sum_{s_{i+1} \in K} p\left(x_{i+1} \mid s_{i+1}\right) p\left(s_{i+1} \mid s_{i}\right) \psi_{i+1}\left(s_{i+1}\right) \quad \forall s_{i} \in K
\end{aligned}
$$

Denoting the transition probability matrices by $P(i)$, we can write this equivalently as matrix-vector multiplications: $\boldsymbol{\phi}_{i}=P(i) \boldsymbol{\phi}_{i-1}$ and $\boldsymbol{\psi}_{i}=P^{T}(i+1) \boldsymbol{\psi}_{i+1}$.

3. Inference algorithms for HMMs

The marginal probabilities are then obtained from

$$
p\left(s_{i}=k, \boldsymbol{x}\right)=\phi_{i}\left(s_{i}=k\right) \psi_{i}\left(s_{i}=k\right)
$$

The computational complexity for computing all marginal probabilities in all positions $i=1, \ldots, n$ is thus $\mathcal{O}\left(n K^{2}\right)$.

Remark 1.

- We can also compute pairwise marginal probabilities from the ϕ-s and ψ-s

$$
p\left(s_{i-1}, s_{i}, \boldsymbol{x}\right)=\phi_{i-1}\left(s_{i-1}\right)\left[p\left(s_{i} \mid s_{i-1}\right) p\left(x_{i} \mid s_{i}\right)\right] \psi_{i}\left(s_{i}\right)
$$

- Computing conditional marginal probabilities is then easy:

$$
p\left(s_{i}=k \mid \boldsymbol{x}\right)=\frac{p\left(s_{i}=k, \boldsymbol{x}\right)}{\sum_{k^{\prime} \in K} p\left(s_{i}=k^{\prime}, \boldsymbol{x}\right)}
$$

- The same holds for computing the probability that the model will generate the sequence of features $\boldsymbol{x}: p(\boldsymbol{x})=\sum_{k \in K} p\left(s_{i}=k, \boldsymbol{x}\right)$.

4. Learning algorithms for HMMs

Supervised learning:

Given i.i.d. training data $\mathcal{T}^{m}=\left\{\left(\boldsymbol{x}^{j}, \boldsymbol{s}^{j}\right) \in \mathcal{X}^{n} \times K^{n} \mid j=1, \ldots, m\right\}$, estimate the parameters of the HMM by the maximum likelihood estimator.

This is done by simple "counting" as before for Markov models.

- Denote by $a_{i}\left(s_{i-1}=\ell, s_{i}=k\right)$ the number of examples in \mathcal{T}^{m} for which $s_{i-1}=\ell$ and $s_{i}=k$.
- Denote by $b_{i}\left(s_{i}=k, x_{i}=x\right)$ the number of examples in \mathcal{T}^{m} for which $s_{i}=k$ and $x_{i}=x$.

The estimates for the model parameters are then given by

$$
p\left(s_{i}=k \mid s_{i-1}=\ell\right)=\frac{a_{i}\left(s_{i-1}=\ell, s_{i}=k\right)}{\sum_{k^{\prime}} a_{i}\left(s_{i-1}=\ell, s_{i}=k^{\prime}\right)}, p\left(x_{i}=x \mid s_{i}=k\right)=\frac{b_{i}\left(s_{i}=k, x_{i}=x\right)}{\sum_{x^{\prime}} b_{i}\left(s_{i}=k, x_{i}=x^{\prime}\right)}
$$

Remark 2. This is easy to generalise for the case that $\mathcal{X}=\mathbb{R}^{m}$ and $p\left(x_{i} \mid s_{i}\right)$ is from some parametric distribution family.
Remark 3. Learning HMMs by empirical risk minimisation has been discussed in Lecture 5 . (Structured output SVMs).

4. Learning algorithms for HMMs

Unsupervised learning:

Given i.i.d. training data $\mathcal{T}^{m}=\left\{\boldsymbol{x}^{j} \in \mathcal{X}^{n} \mid j=1, \ldots, m\right\}$, estimate the parameters of the HMM by the maximum likelihood estimator.

We apply the EM-algorithm (aka Baum-Welch algorithm): Initialise the model, then iterate E-step Use the current model estimate and compute the pairwise marginal probabilities

$$
\alpha_{\boldsymbol{x}}\left(s_{i}, s_{i-1}\right)=p\left(s_{i}, s_{i-1} \mid \boldsymbol{x}\right) \quad s_{i-1}, s_{i} \in K
$$

for each training example $\boldsymbol{x} \in \mathcal{T}^{m}$ and all positions $i=2, \ldots, n$. See Remark 1 .
M-step Use the α-s as soft labels for computing the counts as in supervised learning

$$
a_{i}\left(s_{i-1}, s_{i}\right)=\sum_{\boldsymbol{x} \in \mathcal{T}^{m}} \alpha_{\boldsymbol{x}}\left(s_{i}, s_{i-1}\right), \quad b_{i}\left(s_{i}, x\right)=\sum_{\boldsymbol{x} \in \mathcal{T}\left(x_{i}=x\right)} \alpha_{\boldsymbol{x}}\left(s_{i}\right)
$$

where $\mathcal{T}\left(x_{i}=x\right)$ is the set of training examples with $x_{i}=x$ and $\alpha_{\boldsymbol{x}}\left(s_{i}\right)$ is given by $\alpha_{\boldsymbol{x}}\left(s_{i}\right)=\sum_{s_{i-1}} \alpha_{\boldsymbol{x}}\left(s_{i}, s_{i-1}\right)$.

- Hidden Markov models are statistical models for pairs of processes (sequences) (s, \boldsymbol{x}), where s is a sequence of hidden states and not directly observable.
- Markov models and HMMs are exponential families.
- Their parameters can be estimated by supervised leaning using either Maximum likelihood estimates or Empirical risk minimisation.
- Their parameters can be estimated by unsupervised learning using the EM-algorithm.
- All important inference and learning algorithms for HMMs have time complexity linear in the length of the sequence and quadratic in the size of the hidden state space.
- What if the space of hidden states is very large, e.g. $s_{i} \in \mathbb{Z}^{k}$? We can use recurrent neural networks for modelling $p\left(s_{i} \mid s_{i-1}\right)$, e.g. Gated recurrent Units (GRU) or Long short-term memory models (LSTM).

