Statistical Machine Learning (BE4M33SSU) Lecture 10: Markov Models
 Czech Technical University in Prague

- Markov models on sequences
- Inference algorithms for Markov models
- Parameter learning for Markov models

1. Structured hidden states

Models discussed so far: mainly classifiers predicting a categorical (class) variable $y \in \mathcal{Y}$
Often in applications: the hidden state y is a structured variable.
Here: the hidden state y is given by a sequence of categorical variables.

Application examples:

- text recognition (printed, handwritten, "in the wild"),
- speech recognition (single word recognition, continuous speech recognition, translation),
- robot self localisation.

Markov Models and Hidden Markov Models on chains:

a class of generative probabilistic models for sequences of features and sequences of categorical variables.

2. Markov Models

Let $s=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ denote a sequence of length n with elements from a finite set K.
Any joint probability distribution on K^{n} can be written as

$$
p\left(s_{1}, s_{2}, \ldots, s_{n}\right)=p\left(s_{1}\right) p\left(s_{2} \mid s_{1}\right) p\left(s_{3} \mid s_{2}, s_{1}\right) \cdot \ldots \cdot p\left(s_{n} \mid s_{1}, \ldots, s_{n-1}\right)
$$

Definition 1. A joint p.d. on K^{n} is a Markov model if

$$
p(\boldsymbol{s})=p\left(s_{1}\right) p\left(s_{2} \mid s_{1}\right) p\left(s_{3} \mid s_{2}\right) \cdot \ldots \cdot p\left(s_{n} \mid s_{n-1}\right)=p\left(s_{1}\right) \prod_{i=2}^{n} p\left(s_{i} \mid s_{i-1}\right)
$$

holds for any $\boldsymbol{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$.

2. Markov Models

Example 1 (Random walk on a graph).

- Let (V, E) be a directed graph. A random walk in (V, E) is described by a sequence $s=\left(s_{1}, \ldots, s_{t}, \ldots\right)$ of visited nodes, i.e. $s_{t} \in V$.
- The walker starts in node $i \in V$ with probability $p\left(s_{1}=i\right)$.
- The edges of the graph are weighted by $w: E \rightarrow \mathbb{R}_{+}$, s.t.

$$
\sum_{j:(i, j) \in E} w_{i j}=1 \quad \forall i \in V
$$

- In the current position $s_{t}=i$, the walker randomly chooses an outgoing edge with probability given by the weights and moves along this edge, i.e.

$$
p\left(s_{t+1}=j \mid s_{t}=i\right)= \begin{cases}w_{i j} & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

3. Algorithms: Computing the most probable sequence

How to compute the most probable sequence $\boldsymbol{s}^{*} \in \underset{\boldsymbol{s} \in K^{n}}{\arg \max }\left[p\left(s_{1}\right) \prod_{i=2}^{n} p\left(s_{i} \mid s_{i-1}\right)\right]$?
Take the logarithm of $p(\boldsymbol{s}): \boldsymbol{s}^{*} \in \underset{\boldsymbol{s} \in K^{n}}{\arg \max }\left[g_{1}\left(s_{1}\right)+\sum_{i=2}^{n} g_{i}\left(s_{i-1}, s_{i}\right)\right]$
and apply dynamic programming: Set $\phi_{1}\left(s_{1}\right) \equiv g_{1}\left(s_{1}\right)$ and compute

$$
\phi_{i}\left(s_{i}\right)=\max _{s_{i-1} \in K}\left[\phi_{i-1}\left(s_{i-1}\right)+g_{i}\left(s_{i-1}, s_{i}\right)\right] \quad \forall s_{i} \in K .
$$

Finally, find $s_{n}^{*} \in \arg \max _{s_{n} \in K} \phi_{n}\left(s_{n}\right)$ and back-track the solution. This corresponds to searching the best path in the graph

3. Algorithms: Computing marginal probabilities

How to compute marginal probabilities for the sequence element s_{j} in position j

$$
p\left(s_{j}\right)=\sum_{s_{1} \in K} \cdots \underbrace{}_{s_{j} \in K} \cdots \sum_{s_{n} \in K} p\left(s_{1}\right) \prod_{i=2}^{n} p\left(s_{i} \mid s_{i-1}\right)
$$

Summation over the trailing variables is easily done because:

$$
\sum_{s_{n} \in K} p\left(s_{1}\right) \cdots p\left(s_{n-1} \mid s_{n-2}\right) p\left(s_{n} \mid s_{n-1}\right)=p\left(s_{1}\right) \cdots p\left(s_{n-1} \mid s_{n-2}\right)
$$

The summation over the leading variables is done dynamically: Begin with $p\left(s_{1}\right)$ and compute

$$
p\left(s_{i}\right)=\sum_{s_{i-1} \in K} p\left(s_{i} \mid s_{i-1}\right) p\left(s_{i-1}\right) \quad \forall s_{i} \in K
$$

3. Algorithms: Computing marginal probabilities

This computation is equivalent to a matrix vector multiplication: Consider the values $p\left(s_{i}=k \mid s_{i-1}=k^{\prime}\right)$ as elements of a matrix $P_{k k^{\prime}}(i)$ and the values of $p\left(s_{i}=k^{\prime}\right)$ as elements of a vector $\boldsymbol{\pi}_{i}$. Then the computation above reads as $\boldsymbol{\pi}_{i}=P(i) \boldsymbol{\pi}_{i-1}$.

Remark 1.

- A Markov model is called homogeneous if the transition probabilities $p\left(s_{i}=k \mid s_{i-1}=k^{\prime}\right)$ do not depend on the position i in the sequence. In this case the formula $\boldsymbol{\pi}_{i}=P^{i-1} \boldsymbol{\pi}_{1}$ holds for the computation of the marginal probabilities.
- Notice that the preferred direction (from first to last) in the Def. 1 of a Markov model is only apparent. By computing the marginal probabilities $p\left(s_{i}\right)$ and by using $p\left(s_{i} \mid s_{i-1}\right) p\left(s_{i-1}\right)=p\left(s_{i-1}, s_{i}\right)=p\left(s_{i-1} \mid s_{i}\right) p\left(s_{i}\right)$, we can rewrite the model in reverse order.

3. Algorithms: Learning a Markov model

Suppose we are given i.i.d. training data $\mathcal{T}^{m}=\left\{s^{j} \in K^{n} \mid j=1, \ldots, m\right\}$ and want to estimate the parameters of the Markov model by the maximum likelihood estimate. This is very easy:

- Denote by $\alpha\left(s_{i-1}=\ell, s_{i}=k\right)$ the number of sequences in \mathcal{T}^{m} for which $s_{i-1}=\ell$ and $s_{i}=k$.
- The estimates for the conditional probabilities are then given by

$$
p\left(s_{i}=k \mid s_{i-1}=\ell\right)=\frac{\alpha\left(s_{i-1}=\ell, s_{i}=k\right)}{\sum_{k} \alpha\left(s_{i-1}=\ell, s_{i}=k\right)} .
$$

Proof (idea):
Consider all terms in the log-likelihood that depend on the transition probability from $(i-1) \rightarrow i$ and rewrite them using transition counts $\alpha\left(s_{i-1}=\ell, s_{i}=k\right)$

$$
\frac{1}{m} \sum_{s \in \mathcal{T}^{m}} \log p\left(s_{i} \mid s_{i-1}\right)=\frac{1}{m} \sum_{k, \ell \in K} \alpha\left(s_{i-1}=\ell, s_{i}=k\right) \log p\left(s_{i}=k \mid s_{i-1}=\ell\right)
$$

Maximise this w.r.t. $p\left(s_{i} \mid s_{i-1}\right)$ under the constraint $\sum_{s_{i} \in K} p\left(s_{i} \mid s_{i-1}\right)=1$.

3. Algorithms: Learning a Markov model

Markov models are exponential families. For simplicity we show this for the family of homogeneous Markov models on sequences $\boldsymbol{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ of length n under the additional assumption that $p\left(s_{1}\right)=\frac{1}{K}$.

We have

$$
p(\boldsymbol{s})=\frac{1}{K} \prod_{i=2}^{n} p\left(s_{i} \mid s_{i-1}\right)
$$

sufficient statistic: $\Phi(s)$ is a $K \times K$ matrix with entries $\Phi_{k l}(s)$ counting the number of transitions from state l to state k in the sequence s.

- natural parameter: H is a $K \times K$ matrix with entries $H_{k l}=\log p\left(s_{i}=k \mid s_{i-1}=l\right)$

We can write the probability of sequences as

$$
p(s ; H)=\exp [\langle\Phi(\boldsymbol{s}), H\rangle-\log (K)]
$$

Remark 2. This can be generalised for models with non-uniform $p\left(s_{1}\right)$ and also for general (i.e. non-homogeneous) Markov models.

4. Return times and limiting distributions

- A homogeneous Markov model is irreducible if each state l can be reached starting from any state k with non-zero probability (after some number of transitions).
- A state k has return time τ if it can be reached with non-zero probability after τ transitions when starting from itself.
- A state $k \in K$ is a-periodic if the greatest common divisor of its return times is 1 . Theorem 1. Let P be the transition probability matrix of an irreducible homogeneous Markov model with a-periodic states. Then there exists a unique marginal probability vector π^{*} s.t. $P \pi^{*}=\pi^{*}$. Moreover, it is a limiting distribution, i.e.

$$
\lim _{t \rightarrow \infty} P^{t} \boldsymbol{\pi}=\boldsymbol{\pi}^{*}
$$

for arbitrary starting distributions $\boldsymbol{\pi}$.
Q: What conditions on the graph in Example 1 ensure that this theorem applies for the random walk considered there?

