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� When do we need generative learning?

� Parametric distribution families

� Maximum Likelihood Estimator and its properties
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1. When do we need generative learning?

Discriminative learning: p(x,y) unknown

� define a hypothesis class H of predictors h : X →Y and fix a loss `(y,y′)

� given a training set T m, learn hm : X →Y by empirical risk minimisation.

Cases when this is not sufficient:

� we need the uncertainty of the prediction hm(x)

� semi-supervised learning, i.e. only a part of the training data is annotated

� the statistical relation between x and y depends on some latent variables z,
e.g. p(x,y,z) = p(x |z,y)p(z)p(y), but we never see z in the training data.

� we want to learn models that can generate realistic data x

http://cmp.felk.cvut.cz
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2. Generative learning (Setup)

Generative learning:

� prior knowledge/assumption: define a parametric family of distributions pθ(x,y), θ ∈Θ

� given training data T m, estimate the unknown parameter θm = e(T m).

� Then predict hidden states by

h(x) = argmin
y∈Y

∑
y′∈Y

pθm(y′ |x)`(y′,y).

� the uncertainty of the prediction can be obtained from pθm(y |x),

� data can be generated from pθm(x |y).

� semi-supervised learning possible e.g. by Expectation Maximisation algorithm

http://cmp.felk.cvut.cz
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3. Parametric distribution families

Parametric distribution family: A set of distributions for a r.v. X with common structure
and specified by parameter values.
Example 1. The family of multivariate normal distributions N (µ,V ) on Rn

pµ,V (x) =
1

(2π)n/2|V |1/2
exp
[
−1

2
(x−µ)TV −1(x−µ)

]
parametrised by the vector µ ∈ Rn and a positive (semi) definite n×n matrix V .
Example 2. The family of Poisson distributions on x ∈ N with probability mass

p(x= k) =
λke−λ

k!

parametrised by λ ∈ R+. Notice that λ= E[X] = V[X].

http://cmp.felk.cvut.cz
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3. Parametric distribution families

Both families are examples of a broad class of distribution families – exponential families.

Definition 1. A family of distributions for a random variable x ∈ X is an exponential family
if its probability density / probability mass has the form

pθ(x) = h(x)exp
[
〈φ(x),θ〉−A(θ)

]
,

where

φ(x) ∈ Rn is the sufficient statistics,

θ ∈ Rn is the (natural) parameter,

h(x) is the base measure and

A(θ) is the cumulant function defined by

A(θ) = log

∫
Rn
h(x)exp

[
〈φ(x),θ〉

]
dν(x)

http://cmp.felk.cvut.cz
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3. Parametric distribution families

Kullback-Leibler divergence: similarity measure for distributions, defined by

DKL(q(x) ‖ p(x)) =
∑
x∈X

q(x) log
q(x)

p(x)

DKL is non-negative, i.e. DKL(q(x) ‖ p(x))> 0 with equality iff p(x) = q(x) ∀x ∈ X . This
follows from strict concavity of the function log(x)

−DKL(q ‖ p) =
∑
x∈X

q(x) log
p(x)

q(x)
6
∑
x∈X

q(x)
[p(x)

q(x)
−1
]

= 0

� it is not symmetric, i.e. DKL(q(x) ‖ p(x)) 6=DKL(p(x) ‖ q(x)).

� it is undefined if ∃x : q(x)> 0 and p(x) = 0.

� DKL can be generalised for continuous distributions and is invariant under coordinate
transforms.

http://cmp.felk.cvut.cz
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3. Parametric distribution families

Example 3. Approximate a mixture of two Gaussians p(x) by a single Gaussian q(x)
w.r.t. KL-divergence. Difference between forward and reverse KL-divergence.

http://cmp.felk.cvut.cz
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4. Parameter estimation

Given: a parametric family of distributions pθ(x), θ ∈Θ and an i.i.d. training set
T m =

{
xj ∈ X | j = 1, . . . ,m

}
generated from pθ∗(x) with unknown θ∗.

Estimator: a mapping θm = e(T m), which maps training sets to parameters,
i.e. e : T m 7→ θm ∈Θ

Example 4. Estimating parameters of a normal
distribution

� red: true distribution N (0,1)

� blue and green: sample two i.i.d. training
sets from it and estimate parameters.
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Desired properties of an estimator:
� estimator is unbiased i.e. ETm∼θ∗

[
e(T m)

]
= θ∗

� estimator has small variance VTm∼θ∗
[
e(T m)

]
� estimator is consistent Pθ∗

(
|e(T m)−θ∗|> ε

)
→ 0 for m→∞

http://cmp.felk.cvut.cz
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4. Maximum Likelihood estimator

Define the log-likelihood to obtain the given i.i.d. training data T m from the distribution
with parameter θ ∈Θ

LT m(θ) =
1

m
logPθ(T m) =

1

m

∑
x∈T m

logpθ(x)

Notice: we normalise the log-likelihood by the sample size to make it comparable for
different sample sizes.

The Maximum Likelihood estimator is defined by

θm = eML(T m) ∈ argmax
θ∈Θ

LT m(θ) = argmax
θ∈Θ

1

m

∑
x∈X

logpθ(x)

i.e. the estimate θm is a maximiser of the log-likelihood.

Is the Maximum Likelihood estimator unbiased?

No, it is not unbiased in general.

http://cmp.felk.cvut.cz
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4. Maximum Likelihood estimator

What conditions ensure MLE consistency, i.e.

Pθ∗
(
|θ∗−eML(T m)|> ε

) m→∞−−−−→ 0,

where probability is w.r.t. T m ∼ pθ∗(x)?

The ML estimator is consistent if the following properties hold:

� the parameter set Θ ∈ R is an open interval,

� the density is strictly positive, i.e. pθ(x)> 0, and is differentiable in θ for all x,

� the equation
d

dθ
LT m(θ) =

d

dθ

[ 1

m

∑
x∈X

logpθ(x)
]

= 0

has exactly one solution which corresponds to a maximum of LT m(θ). This holds for
each m and each training set T m.

This can be generalised to the case of many parameters Θ ∈ Rn.

http://cmp.felk.cvut.cz
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4. Maximum Likelihood estimator

What can we say about the variance of the ML estimator, i.e. VTm∼θ∗
[
eML(T m)

]
?

The asymptotic variance of the ML estimator is, in a certain sense, the smallest possible!

To make this precise, we need the notion of Fisher information

I(θ) =

∫ [ d
dθ

logpθ(x)
]2

pθ(x)dx= Eθ
[ d
dθ

logpθ(x)
]2

Under some regularity conditions, we have∫
d

dθ
pθ(x)dx= 0 and

∫
d2

dθ2
pθ(x)dx= 0.

Then we have the following equivalent definitions of Fisher information:

I(θ) = Vθ
[ d
dθ

logpθ(x)
]
and I(θ) =−Eθ

[ d2

dθ2
logpθ(x)

]

http://cmp.felk.cvut.cz
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4. Maximum Likelihood estimator

Now, we have the following two statements about the variance of estimators

� The asymptotic distribution of the ML estimator is:

eML(T m)∼N
(
θ,

1

mI(θ)

)
for m→∞

� If e is an unbiased estimator, then its variance can not be smaller, i.e.

VTm∼θ
[
e(T m)

]
>

1

mI(θ)

Summary:

� ML estimator can be biased,

� ML estimator is consistent under weak conditions,

� ML estimator has asymptotically optimal variance.

http://cmp.felk.cvut.cz
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4. Maximum Likelihood estimator

Example 5 (MLE for an exponential family). Let us consider an exponential family

pθ(x) = exp
[
〈φ(x),θ〉−A(θ)

]
and the ML estimator for an i.i.d. training set T m = {xi | i= 1 . . . ,m}. Its log-likelihood is

LT m(θ) =
1

m

∑
x∈T m

logpθ(x) =
1

m

∑
x∈T m

〈φ(x),θ〉−A(θ) = 〈ψ,θ〉−A(θ),

where we denoted ψ = ET m[φ(x)].
� sufficient statistics: we need to know ET m[φ(x)] only.
� The function A(θ) is convex and has gradient ∇A(θ) = Eθ[φ] (see seminar).
� LT m(θ) is concave. Hence any critical point θ with ∇LT m(θ) = 0 is a global maximum.
� Maximisers θ∗ are given by the equation ET m[φ] = Eθ∗[φ].
� The Fisher information for the family is given by the variance of the sufficient statistics

I(θ) =

∫ [ d
dθ

logpθ(x)
]2

pθ(x)dx=

∫ [
φ(x)−Eθ[φ]

]2

pθ(x)dx= Vθ[φ]

http://cmp.felk.cvut.cz
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