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Learning

� The goal: Find a strategy h : X → Y minimizing R(h) using the
training set of examples

T m = {(xi, yi) ∈ (X × Y) | i = 1, . . . ,m}

drawn from i.i.d. rv. with unknown p(x, y).

� Hypothesis class (space):

H ⊆ YX = {h : X → Y}

� Learning algorithm: a function

A : ∪∞m=1 (X × Y)m→ H

which returns a strategy hm = A(T m) for a training set T m
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� The ERM based algorithm returns hm such that

hm ∈ Argmin
h∈H

RT m(h) (1)

� Depending on the choince of H and ` and algorithm solving (1) we get
individual instances e.g. Support Vector Machines, Linear Regression,
Logistic Regression, Neural Networks learned by back-propagation,
AdaBoost, Gradient Boosted Trees, ...
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Learning: Empirical Risk Minimization approach

� The expected risk R(h), i.e. the true but unknown objective, is replaced
by the empirical risk computed from the training examples T m,

RT m(h) =
1

m

m∑
i=1

`(yi, h(xi))
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Example of ERM failure

� Let X = [a, b] ⊂ R, Y = {+1,−1}, `(y, y′) = [[y 6= y′]], p(x | y = +1)

and p(x | y = −1) be uniform distributions on X and p(y = +1) = 0.8.

� The optimal strategy is h(x) = +1 with the Bayes risk R∗ = 0.2.

� Consider learning algorithm which for a given training set
T m = {(x1, y1), . . . , (xm, ym)} returns memorizing strategy

hm(x) =

{
yj if x = xj for some j ∈ {1, . . . ,m}
−1 otherwise

� The empirical risk is RT m(hm) = 0 with probability 1 for any m.

� The expected risk is R(hm) = 0.8 for any m.
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Wrap up of the previous lecture

� We use the empirical risk RSl(h) = 1
l

∑l
i=1 `(y

i, h(yi)) as a proxy of the
true risk R(h) = Ex,y∼p[`(y, h(x))].

� In case of evaluation, h is fixed and due to the law of large numbers,
RSl(h) gets close to R(h) if we have enough examples:

P
(∣∣RSl(h)−R(h)∣∣ ≥ ε) ≤ 2e

− 2l ε2

(`max−`min)2

We say that RSl(h) converges in probability to R(h), i.e.

∀ ε > 0: lim
l→∞

P
(∣∣RSl(h)−R(h)∣∣ ≥ ε) = 0

� In case of learning, hm = A(Tm) is learned from T m then RT m(h) does
not have to get close to R(h) even if we have enough examples:

∀ ε > 0: lim
m→∞

P
(∣∣RT m(hm)−R(hm)∣∣ ≥ ε) 6= 0
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Why law of large numbers does not apply for learning?

� Hoeffding inequality P(|µ̂− µ| ≥ ε) ≤ 2e
− 2mε2

(b−a)2 , µ̂ = 1
m

∑m
i=1 z

i,
requires {z1, . . . , zm} to be sample from i.i.d. rv. with expeted value µ.

� T m = {(x1, y1), . . . , (xm, ym)} is drawn from i.i.d. rv. with p(x, y).

Evaluation:

� h fixed independently on T m, zi = `(yi, h(xi)) and {z1, . . . , zm} is i.i.d.

� Therefore ∀ ε > 0: limm→∞ P(|RT m(h)−R(h)| ≥ ε) = 0

Learning:

� hm = A(T m), zi = `(yi, hm(x
i)) and thus {z1, . . . , zm} is not i.i.d.

� No guarantee that ∀ ε > 0: limm→∞ P(|RT m(hm)−R(hm)| ≥ ε) = 0

� The task for the rest of the lecture is to show how to fix it.
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H = {h(x) = sign(x− θ)|θ ∈ R}, `(y, y′) = [[y 6= y′]]

P
(∣∣R(hm)−RT m(hm)∣∣ ≥ ε) ≤ P

(
sup
h∈H

∣∣R(h)−RT m(h)∣∣ ≥ ε) ≤ B(m,H, ε)
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To fix the problem we need uniform law of large numbers
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� Uniform Law of Large Numbers: if for any p(x, y) generating T m it holds
that

∀ ε > 0: lim
m→∞

P
(

sup
h∈H

∣∣R(h)−RT m(h)∣∣ ≥ ε︸ ︷︷ ︸
empirical risk fails for some h∈H

)
= 0

we say that ULLN applies for H.

� Alternatively we say: the empirical risk converges uniformly to the true
risk, or that the hypothesis class H has the uniform convergence property.
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Uniform Law of Large Numbers

� Law of Large Numbers: for any p(x, y) generating T m, and h ∈ H fixed
without using T m we have

∀ ε > 0: lim
m→∞

P
( ∣∣R(h)−RT m(h)∣∣ ≥ ε︸ ︷︷ ︸

empirical risk fails for h

)
= 0
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� Hoeffding inequality generalized for finite hypothesis class H:

P
(
max
h∈H

∣∣RT m(h)−R(h)∣∣ ≥ ε) ≤ ∑
h∈H

P
(
T m ∈ B(h)

)
= 2 |H| e−

2mε2

(b−a)2

� ULLN applies for finite hypothesis class

∀ ε > 0: lim
m→∞

P
(
max
h∈H
|RT m(h)−R(h)| ≥ ε

)
= 0
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ULLN applies for finite hypothesis class

� Assume a finite hypothesis class H = {h1, . . . , hK}.
� Define the set of all “bad” training sets for a strategy h ∈ H as

B(h) =
{
T m ∈ (X × Y)m

∣∣∣∣∣RT m(h)−R(h)∣∣ ≥ ε}
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Generalization bound for finite hypothesis class

� Hoeffding inequality generalized for a finite hypothesis class H:

P
(
max
h∈H
|RT m(h)−R(h)| ≥ ε

)
≤ 2|H|e−

2mε2

(b−a)2

� Find an upper bound ε on the discrepancy between RT m(h) and R(h)
which holds uniformly for all h ∈ H with probability 1− δ at least:

P
(
max
h∈H
|RT m(h)−R(h)| < ε

)
= 1− P

(
max
h∈H
|RT m(h)−R(h)| ≥ ε

)
≥ 1− 2|H|e−

2mε2

(b−a)2 = 1− δ

and solving the last equality for ε yields

ε = (b− a)

√
log 2|H|+ log 1

δ

2m
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Generalization bound for finite hypothesis class

Theorem: Let T m = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m be draw from
i.i.d. rv. with p.d.f. p(x, y) and let H be a finite hypothesis class. Then, for
any 0 < δ < 1, with probability at least 1− δ the inequality

R(h) ≤ RT m(h)︸ ︷︷ ︸
empirical risk

+(b− a)

√
log 2|H|+ log 1

δ

2m︸ ︷︷ ︸
complexity term

holds for all h ∈ H simultaneously and any loss function ` : Y × Y → [a, b].

� Recommendations that follow from the generalization bound:
1. Minimize the empirical risk.
2. Use as much training examples as possible.
3. Limit the size of the hypothesis space |H|:
Note that 1) and 3) are conflicting recommendations.

� The generalization bound holds for any learning algorithm not just ERM.

http://cmp.felk.cvut.cz


H1 Hi∗ HK

ε(m, |H|, δ)

RT m(h)

h1 hi∗ hK

R(h)

12/12
Structural Risk Minimization

� Learn h : X → Y by minimizing the generalization bound

R(h) ≤ RT m(h) + (b− a)

√
log 2|H|+ log 1

δ

2m︸ ︷︷ ︸
ε(m,|H|,δ)
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