Statistical Machine Learning (BE4M33SSU) Lecture 3: Empirical Risk Minimization

Czech Technical University in Prague V. Franc

♦ The goal: Find a strategy $h \colon \mathcal{X} \to \mathcal{Y}$ minimizing R(h) using the training set of examples

$$\mathcal{T}^m = \{ (x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \dots, m \}$$

drawn from i.i.d. rv. with unknown p(x,y).

Hypothesis class (space):

$$\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}} = \{h \colon \mathcal{X} \to \mathcal{Y}\}\$$

Learning algorithm: a function

$$A: \cup_{m=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^m \to \mathcal{H}$$

which returns a strategy $h_m = A(\mathcal{T}^m)$ for a training set \mathcal{T}^m

3/12

• The expected risk R(h), i.e. the true but unknown objective, is replaced by the empirical risk computed from the training examples \mathcal{T}^m ,

$$R_{\mathcal{T}^m}(h) = \frac{1}{m} \sum_{i=1}^m \ell(y^i, h(x^i))$$

lacktriangle The ERM based algorithm returns h_m such that

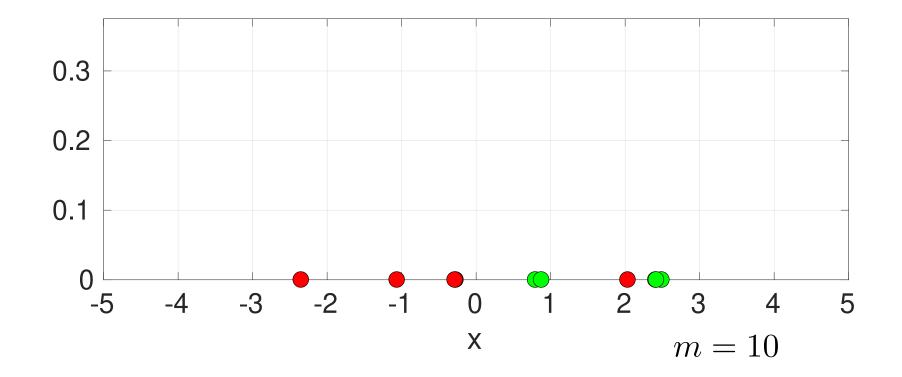
$$h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h) \tag{1}$$

Learning: Empirical Risk Minimization approach

• The expected risk R(h), i.e. the true but unknown objective, is replaced by the empirical risk computed from the training examples \mathcal{T}^m ,

$$R_{\mathcal{T}^m}(h) = \frac{1}{m} \sum_{i=1}^m \ell(y^i, h(x^i))$$

$$\mathcal{H} = \{h(x) = \operatorname{sign}(x - \theta) \mid \theta \in \mathbb{R}\}\$$
, $\ell(y, y') = [y \neq y']$

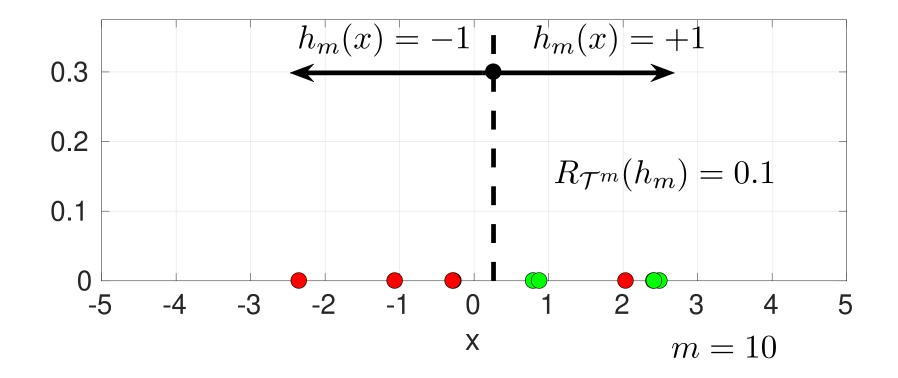


Learning: Empirical Risk Minimization approach

• The expected risk R(h), i.e. the true but unknown objective, is replaced by the empirical risk computed from the training examples \mathcal{T}^m ,

$$R_{\mathcal{T}^m}(h) = \frac{1}{m} \sum_{i=1}^m \ell(y^i, h(x^i))$$

$$\mathcal{H} = \{h(x) = \operatorname{sign}(x - \theta) \mid \theta \in \mathbb{R}\}\$$
, $\ell(y, y') = [y \neq y']$



Learning: Empirical Risk Minimization approach

• The expected risk R(h), i.e. the true but unknown objective, is replaced by the empirical risk computed from the training examples \mathcal{T}^m ,

$$R_{\mathcal{T}^m}(h) = \frac{1}{m} \sum_{i=1}^m \ell(y^i, h(x^i))$$

lacktriangle The ERM based algorithm returns h_m such that

$$h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h) \tag{1}$$

◆ Depending on the choince of H and ℓ and algorithm solving (1) we get individual instances e.g. Support Vector Machines, Linear Regression, Logistic Regression, Neural Networks learned by back-propagation, AdaBoost, Gradient Boosted Trees, ...

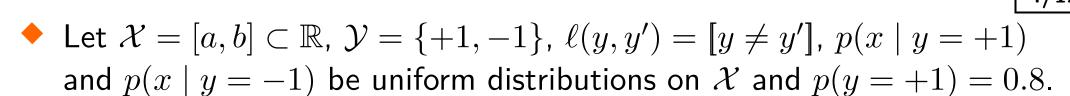
4/12

• Let $\mathcal{X} = [a,b] \subset \mathbb{R}$, $\mathcal{Y} = \{+1,-1\}$, $\ell(y,y') = [y \neq y']$, $p(x \mid y = +1)$ and $p(x \mid y = -1)$ be uniform distributions on \mathcal{X} and p(y = +1) = 0.8.

- Let $\mathcal{X} = [a,b] \subset \mathbb{R}$, $\mathcal{Y} = \{+1,-1\}$, $\ell(y,y') = [y \neq y']$, $p(x \mid y = +1)$ and $p(x \mid y = -1)$ be uniform distributions on \mathcal{X} and p(y = +1) = 0.8.
- The optimal strategy is h(x) = +1 with the Bayes risk $R^* = 0.2$.

- ▶ Let $\mathcal{X} = [a,b] \subset \mathbb{R}$, $\mathcal{Y} = \{+1,-1\}$, $\ell(y,y') = [y \neq y']$, $p(x \mid y = +1)$ and $p(x \mid y = -1)$ be uniform distributions on \mathcal{X} and p(y = +1) = 0.8.
- lacktriangle The optimal strategy is h(x)=+1 with the Bayes risk $R^*=0.2$.
- Consider learning algorithm which for a given training set $\mathcal{T}^m = \{(x^1, y^1), \dots, (x^m, y^m)\}$ returns memorizing strategy

$$h_m(x) = \begin{cases} y^j & \text{if } x = x^j \text{ for some } j \in \{1, \dots, m\} \\ -1 & \text{otherwise} \end{cases}$$



- ullet The optimal strategy is h(x)=+1 with the Bayes risk $R^*=0.2$.
- Consider learning algorithm which for a given training set $\mathcal{T}^m = \{(x^1, y^1), \dots, (x^m, y^m)\}$ returns memorizing strategy

$$h_m(x) = \begin{cases} y^j & \text{if } x = x^j \text{ for some } j \in \{1, \dots, m\} \\ -1 & \text{otherwise} \end{cases}$$

- The empirical risk is $R_{\mathcal{T}^m}(h_m) = 0$ with probability 1 for any m.
- The expected risk is $R(h_m) = 0.8$ for any m.

Wrap up of the previous lecture

5/12

• We use the empirical risk $R_{\mathcal{S}^l}(h) = \frac{1}{l} \sum_{i=1}^l \ell(y^i, h(y^i))$ as a proxy of the true risk $R(h) = \mathbb{E}_{x,y \sim p}[\ell(y, h(x))]$.

Wrap up of the previous lecture

- We use the empirical risk $R_{\mathcal{S}^l}(h) = \frac{1}{l} \sum_{i=1}^l \ell(y^i, h(y^i))$ as a proxy of the true risk $R(h) = \mathbb{E}_{x,y \sim p}[\ell(y, h(x))]$.
- In case of evaluation, h is fixed and due to the law of large numbers, $R_{S^l}(h)$ gets close to R(h) if we have enough examples:

$$\mathbb{P}\Big(\big|R_{\mathcal{S}^l}(h) - R(h)\big| \ge \varepsilon\Big) \le 2e^{-\frac{2l\,\varepsilon^2}{(\ell_{max} - \ell_{min})^2}}$$

Wrap up of the previous lecture

5/12

- We use the empirical risk $R_{\mathcal{S}^l}(h) = \frac{1}{l} \sum_{i=1}^l \ell(y^i, h(y^i))$ as a proxy of the true risk $R(h) = \mathbb{E}_{x,y \sim p}[\ell(y, h(x))]$.
- In case of evaluation, h is fixed and due to the law of large numbers, $R_{S^l}(h)$ gets close to R(h) if we have enough examples:

$$\mathbb{P}\Big(\big|R_{\mathcal{S}^l}(h) - R(h)\big| \ge \varepsilon\Big) \le 2e^{-\frac{2l\,\varepsilon^2}{(\ell_{max} - \ell_{min})^2}}$$

We say that $R_{S^l}(h)$ converges in probability to R(h), i.e.

$$\forall \varepsilon > 0: \lim_{l \to \infty} \mathbb{P}(|R_{\mathcal{S}^l}(h) - R(h)| \ge \varepsilon) = 0$$

© m

Wrap up of the previous lecture

5/12

- We use the empirical risk $R_{\mathcal{S}^l}(h) = \frac{1}{l} \sum_{i=1}^l \ell(y^i, h(y^i))$ as a proxy of the true risk $R(h) = \mathbb{E}_{x,y \sim p}[\ell(y, h(x))]$.
- In case of evaluation, h is fixed and due to the law of large numbers, $R_{S^l}(h)$ gets close to R(h) if we have enough examples:

$$\mathbb{P}\Big(\big|R_{\mathcal{S}^l}(h) - R(h)\big| \ge \varepsilon\Big) \le 2e^{-\frac{2l\,\varepsilon^2}{(\ell_{max} - \ell_{min})^2}}$$

We say that $R_{\mathcal{S}^l}(h)$ converges in probability to R(h), i.e.

$$\forall \varepsilon > 0: \lim_{l \to \infty} \mathbb{P}\Big(\big| R_{\mathcal{S}^l}(h) - R(h) \big| \ge \varepsilon \Big) = 0$$

• In case of learning, $h_m = A(\mathcal{T}_m)$ is learned from \mathcal{T}^m then $R_{\mathcal{T}^m}(h)$ does not have to get close to R(h) even if we have enough examples:

$$\forall \varepsilon > 0: \lim_{m \to \infty} \mathbb{P}\Big(\big| R_{\mathcal{T}^m}(h_m) - R(h_m) \big| \ge \varepsilon \Big) \neq 0$$

6/12

 $lackbox{+}$ Hoeffding inequality $\mathbb{P}(|\hat{\mu}-\mu|\geq \varepsilon)\leq 2e^{-\frac{2m\,\varepsilon^2}{(b-a)^2}}$, $\hat{\mu}=\frac{1}{m}\sum_{i=1}^m z^i$, requires $\{z^1,\ldots,z^m\}$ to be sample from i.i.d. rv. with expeted value μ .

- lacklet Hoeffding inequality $\mathbb{P}(|\hat{\mu}-\mu|\geq \varepsilon)\leq 2e^{-\frac{2m\,\varepsilon^2}{(b-a)^2}}$, $\hat{\mu}=\frac{1}{m}\sum_{i=1}^m z^i$, requires $\{z^1,\ldots,z^m\}$ to be sample from i.i.d. rv. with expeted value μ .
- $\mathcal{T}^m = \{(x^1, y^1), \dots, (x^m, y^m)\}$ is drawn from i.i.d. rv. with p(x, y).

- 6/12
- $lackbox{ Hoeffding inequality } \mathbb{P}(|\hat{\mu}-\mu|\geq arepsilon)\leq 2e^{-rac{2m\,arepsilon^2}{(b-a)^2}},\, \hat{\mu}=rac{1}{m}\sum_{i=1}^m z^i,$ requires $\{z^1,\ldots,z^m\}$ to be sample from i.i.d. rv. with expeted value μ .
- $\mathcal{T}^m = \{(x^1, y^1), \dots, (x^m, y^m)\}$ is drawn from i.i.d. rv. with p(x, y).

Evaluation:

- lacktriangleq h fixed independently on \mathcal{T}^m , $z^i = \ell(y^i, h(x^i))$ and $\{z^1, \dots, z^m\}$ is i.i.d.
- Therefore $\forall \varepsilon > 0$: $\lim_{m \to \infty} \mathbb{P}(|R_{\mathcal{T}^m}(h) R(h)| \ge \varepsilon) = 0$

- 6/12
- $lackbox{+}$ Hoeffding inequality $\mathbb{P}(|\hat{\mu}-\mu|\geq \varepsilon)\leq 2e^{-\frac{2m\,\varepsilon^2}{(b-a)^2}}$, $\hat{\mu}=\frac{1}{m}\sum_{i=1}^m z^i$, requires $\{z^1,\ldots,z^m\}$ to be sample from i.i.d. rv. with expeted value μ .
- $\mathcal{T}^m = \{(x^1, y^1), \dots, (x^m, y^m)\}$ is drawn from i.i.d. rv. with p(x, y).

Evaluation:

- lacktriangleq h fixed independently on \mathcal{T}^m , $z^i = \ell(y^i, h(x^i))$ and $\{z^1, \dots, z^m\}$ is i.i.d.
- Therefore $\forall \varepsilon > 0$: $\lim_{m \to \infty} \mathbb{P}(|R_{\mathcal{T}^m}(h) R(h)| \ge \varepsilon) = 0$

Learning:

- \bullet $h_m = A(\mathcal{T}^m)$, $z^i = \ell(y^i, h_m(x^i))$ and thus $\{z^1, \ldots, z^m\}$ is not i.i.d.
- No guarantee that $\forall \varepsilon > 0$: $\lim_{m \to \infty} \mathbb{P}(|R_{\mathcal{T}^m}(h_m) R(h_m)| \ge \varepsilon) = 0$

6/12

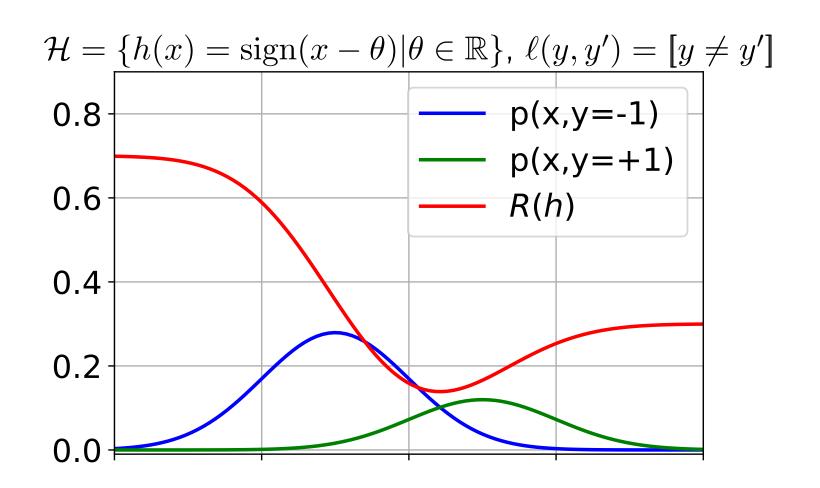
- $lackbox{+}$ Hoeffding inequality $\mathbb{P}(|\hat{\mu}-\mu|\geq \varepsilon)\leq 2e^{-\frac{2m\,\varepsilon^2}{(b-a)^2}}$, $\hat{\mu}=\frac{1}{m}\sum_{i=1}^m z^i$, requires $\{z^1,\ldots,z^m\}$ to be sample from i.i.d. rv. with expeted value μ .
- $\mathcal{T}^m = \{(x^1, y^1), \dots, (x^m, y^m)\}$ is drawn from i.i.d. rv. with p(x, y).

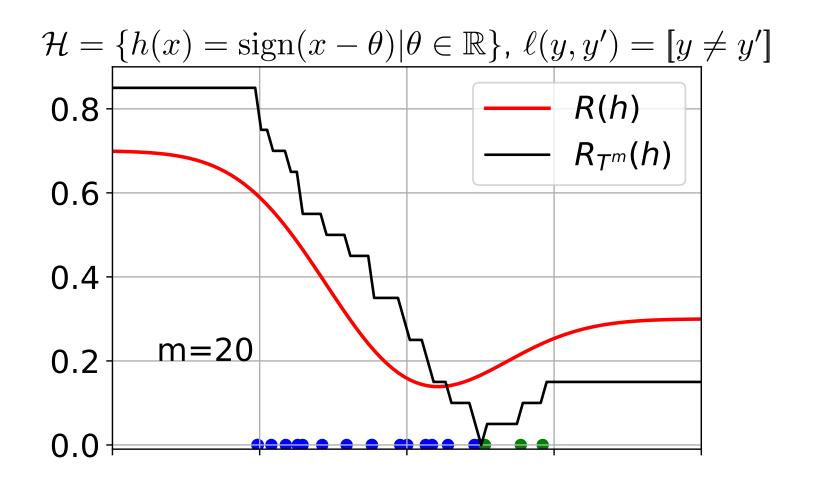
Evaluation:

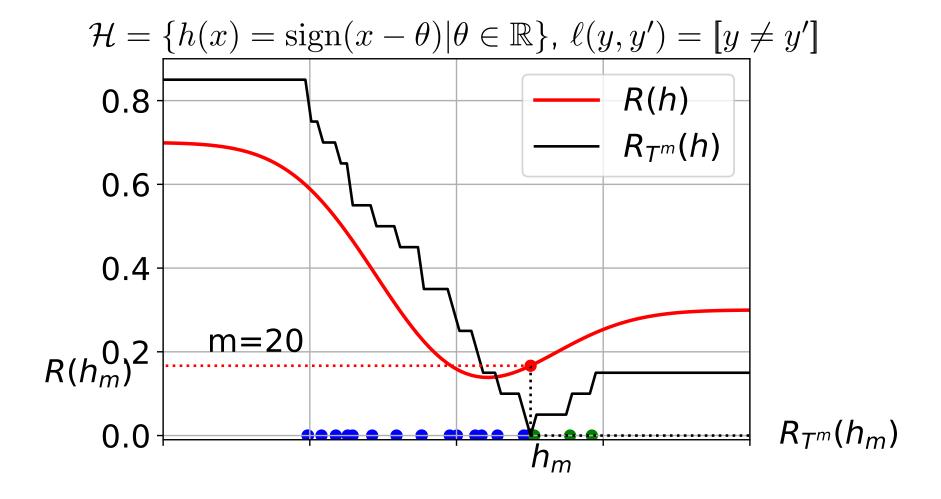
- lacktriangledown h fixed independently on \mathcal{T}^m , $z^i=\ell(y^i,h(x^i))$ and $\{z^1,\ldots,z^m\}$ is i.i.d.
- Therefore $\forall \varepsilon > 0$: $\lim_{m \to \infty} \mathbb{P}(|R_{\mathcal{T}^m}(h) R(h)| \ge \varepsilon) = 0$

Learning:

- \bullet $h_m = A(\mathcal{T}^m)$, $z^i = \ell(y^i, h_m(x^i))$ and thus $\{z^1, \ldots, z^m\}$ is not i.i.d.
- No guarantee that $\forall \varepsilon > 0$: $\lim_{m \to \infty} \mathbb{P}(|R_{\mathcal{T}^m}(h_m) R(h_m)| \ge \varepsilon) = 0$
- The task for the rest of the lecture is to show how to fix it.

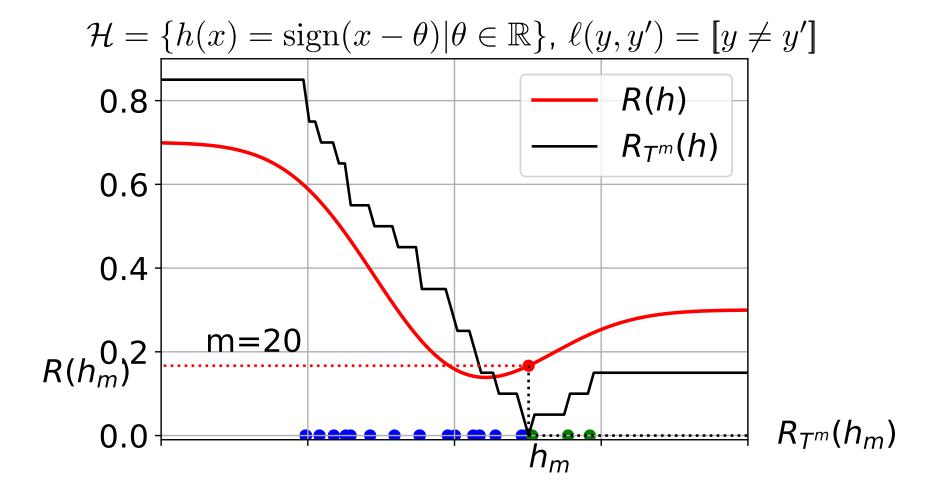






For learning we need: the empirical risk $R_{\mathcal{T}^m}(h_m)$ of the learned strategy $h_m = A(\mathcal{T}^m)$ conveges to the true risk $R(h_m)$:

$$\forall \varepsilon > 0: \lim_{m \to \infty} \mathbb{P}\Big(\big| R(h_m) - R_{\mathcal{T}^m}(h_m) \big| \ge \varepsilon \Big) = 0$$

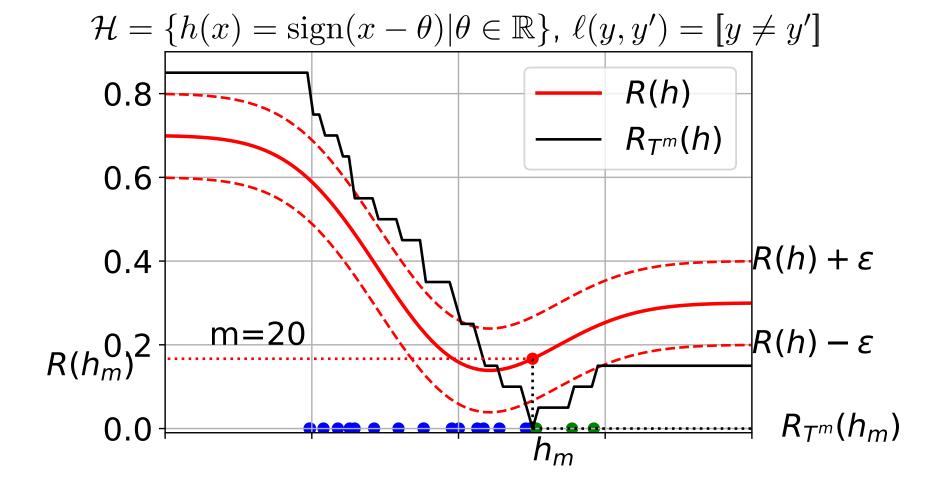


$$\mathbb{P}\Big(\big|R(h_m) - R_{\mathcal{T}^m}(h_m)\big| \ge \varepsilon\Big) \le \mathbb{P}\Big(|R(h_1) - R_{\mathcal{T}^m}(h_1)\big| \ge \varepsilon \text{ or } |R(h_2) - R_{\mathcal{T}^m}(h_2)\big| \ge \varepsilon \text{ or } |R(h_2) - R_{\mathcal{T}^m}(h_2)| \ge \varepsilon$$

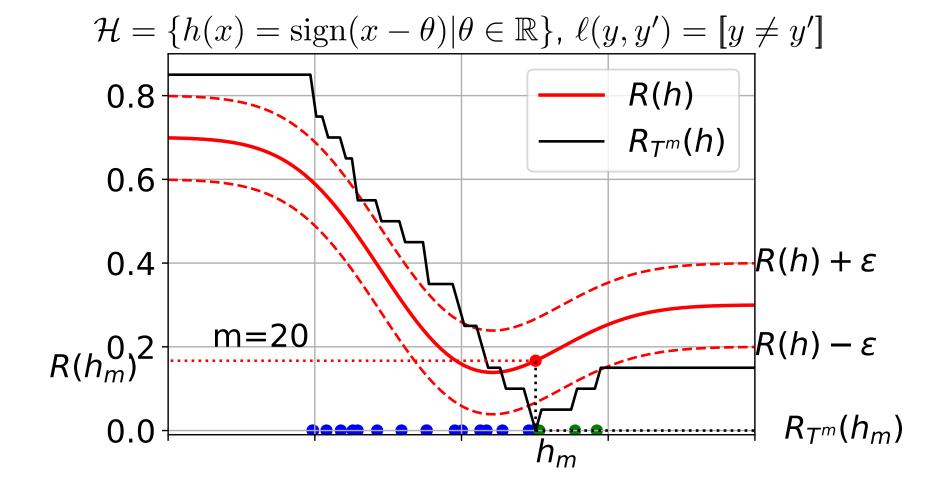
$$|R(h_{|\mathcal{H}|}) - R_{\mathcal{T}^m}(h_{|\mathcal{H}|})| \ge \varepsilon$$



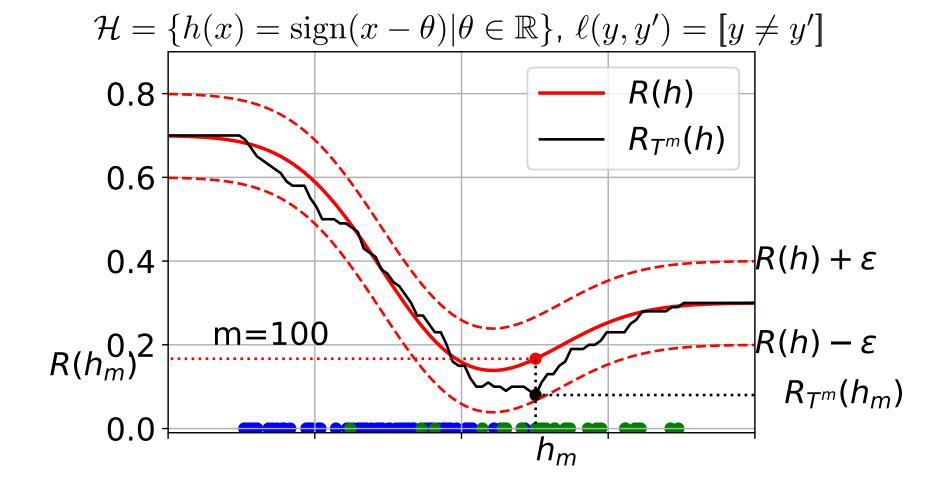
$$\mathbb{P}\Big(\big|R(h_m) - R_{\mathcal{T}^m}(h_m)\big| \ge \varepsilon\Big) \le \mathbb{P}\Big(\sup_{h \in \mathcal{H}} \big|R(h) - R_{\mathcal{T}^m}(h)\big| \ge \varepsilon\Big)$$



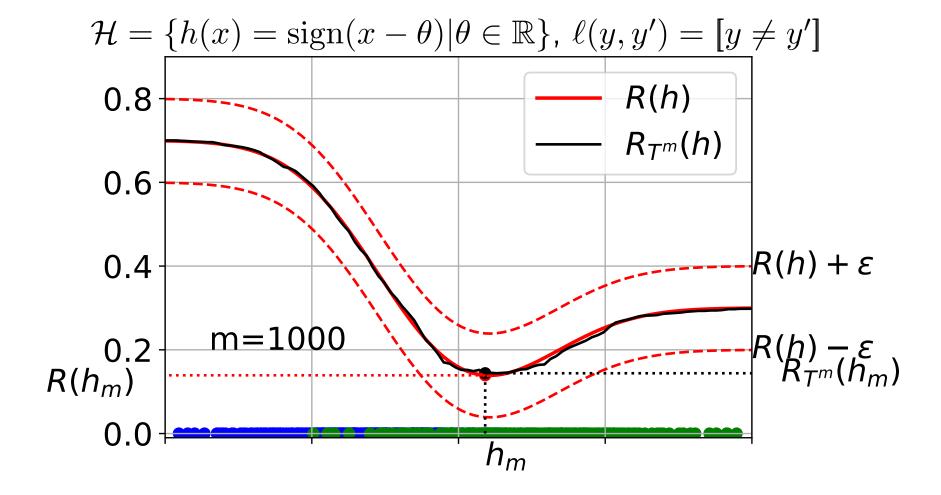
$$\mathbb{P}\Big(\big|R(h_m) - R_{\mathcal{T}^m}(h_m)\big| \ge \varepsilon\Big) \le \mathbb{P}\Big(\sup_{h \in \mathcal{H}} \big|R(h) - R_{\mathcal{T}^m}(h)\big| \ge \varepsilon\Big) \le B(m, \overline{\mathcal{H}, \varepsilon})$$



$$\mathbb{P}\Big(\big|R(h_m) - R_{\mathcal{T}^m}(h_m)\big| \ge \varepsilon\Big) \le \mathbb{P}\Big(\sup_{h \in \mathcal{H}} \big|R(h) - R_{\mathcal{T}^m}(h)\big| \ge \varepsilon\Big) \le B(m, \mathcal{H}, \varepsilon)$$



$$\mathbb{P}\Big(\big|R(h_m) - R_{\mathcal{T}^m}(h_m)\big| \ge \varepsilon\Big) \le \mathbb{P}\Big(\sup_{h \in \mathcal{H}} \big|R(h) - R_{\mathcal{T}^m}(h)\big| \ge \varepsilon\Big) \le B(m, \mathcal{H}, \varepsilon)$$



8/12

• Law of Large Numbers: for any p(x,y) generating \mathcal{T}^m , and $h \in \mathcal{H}$ fixed without using \mathcal{T}^m we have

$$\forall \varepsilon > 0 \colon \lim_{m \to \infty} \mathbb{P}\left(\underbrace{|R(h) - R_{\mathcal{T}^m}(h)| \ge \varepsilon}_{\text{empirical risk fails for h}}\right) = 0$$

8/12

• Law of Large Numbers: for any p(x,y) generating \mathcal{T}^m , and $h \in \mathcal{H}$ fixed without using \mathcal{T}^m we have

$$\forall \varepsilon > 0 \colon \lim_{m \to \infty} \mathbb{P}\left(\underbrace{|R(h) - R_{\mathcal{T}^m}(h)| \ge \varepsilon}\right) = 0$$
empirical risk fails for h

lackloais Uniform Law of Large Numbers: if for any p(x,y) generating \mathcal{T}^m it holds that

$$\forall \, \varepsilon > 0 \colon \lim_{m \to \infty} \mathbb{P} \Big(\begin{array}{c|c} \left| R(h_1) - R_{\mathcal{T}^m}(h_1) \right| \geq \varepsilon & \text{or} \\ \left| R(h_2) - R_{\mathcal{T}^m}(h_2) \right| \geq \varepsilon & \text{or} \\ \vdots & \\ \left| R(h_{|\mathcal{H}|}) - R_{\mathcal{T}^m}(h_{|\mathcal{H}|}) \right| \geq \varepsilon \\ & \underbrace{\left| R(h_{|\mathcal{H}|}) - R_{\mathcal{T}^m}(h_{|\mathcal{H}|}) \right| \geq \varepsilon}_{\text{empirical risk fails for some } h \in \mathcal{H}} \Big) = 0$$

we say that ULLN applies for \mathcal{H} .

8/12

• Law of Large Numbers: for any p(x,y) generating \mathcal{T}^m , and $h \in \mathcal{H}$ fixed without using \mathcal{T}^m we have

$$\forall \varepsilon > 0 \colon \lim_{m \to \infty} \mathbb{P}\left(\underbrace{|R(h) - R_{\mathcal{T}^m}(h)| \ge \varepsilon}\right) = 0$$
empirical risk fails for h

lacktriangle Uniform Law of Large Numbers: if for any p(x,y) generating \mathcal{T}^m it holds that

$$\forall \varepsilon > 0 \colon \lim_{m \to \infty} \mathbb{P} \Big(\sup_{h \in \mathcal{H}} |R(h) - R_{\mathcal{T}^m}(h)| \ge \varepsilon \Big) = 0$$
empirical risk fails for some hear

we say that ULLN applies for \mathcal{H} .

8/12

• Law of Large Numbers: for any p(x,y) generating \mathcal{T}^m , and $h \in \mathcal{H}$ fixed without using \mathcal{T}^m we have

$$\forall \varepsilon > 0 \colon \lim_{m \to \infty} \mathbb{P}\left(\underbrace{|R(h) - R_{\mathcal{T}^m}(h)| \ge \varepsilon}\right) = 0$$
empirical risk fails for h

lackloais Uniform Law of Large Numbers: if for any p(x,y) generating \mathcal{T}^m it holds that

$$\forall \varepsilon > 0 \colon \lim_{m \to \infty} \mathbb{P} \Big(\sup_{h \in \mathcal{H}} |R(h) - R_{\mathcal{T}^m}(h)| \ge \varepsilon \Big) = 0$$
empirical risk fails for some $h \in \mathcal{H}$

we say that ULLN applies for \mathcal{H} .

lacktriangle Alternatively we say: the empirical risk converges uniformly to the true risk, or that the hypothesis class ${\cal H}$ has the uniform convergence property.

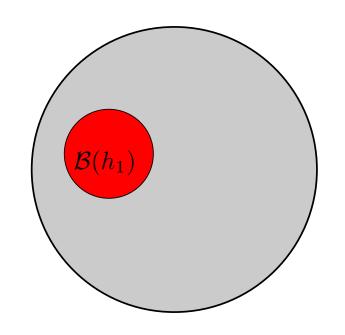
- Assume a finite hypothesis class $\mathcal{H} = \{h_1, \dots, h_K\}$.
- lacktriangle Define the set of all "bad" training sets for a strategy $h \in \mathcal{H}$ as

$$\mathcal{B}(h) = \left\{ \mathcal{T}^m \in (\mathcal{X} \times \mathcal{Y})^m \middle| \left| R_{\mathcal{T}^m}(h) - R(h) \right| \ge \varepsilon \right\}$$

ULLN applies for finite hypothesis class

- Assume a finite hypothesis class $\mathcal{H} = \{h_1, \dots, h_K\}$.
- lacktriangle Define the set of all "bad" training sets for a strategy $h \in \mathcal{H}$ as

$$\mathcal{B}(h) = \left\{ \mathcal{T}^m \in (\mathcal{X} \times \mathcal{Y})^m \middle| \left| R_{\mathcal{T}^m}(h) - R(h) \right| \ge \varepsilon \right\}$$



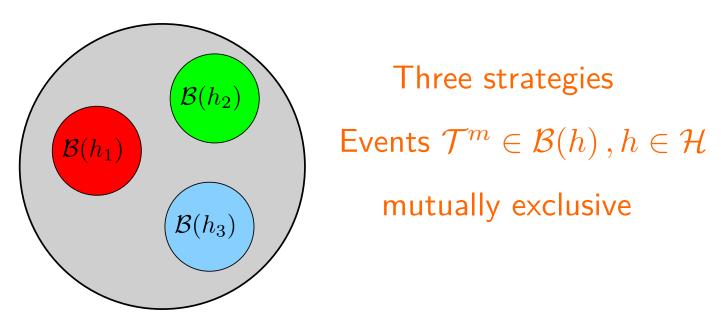
Single strategy

$$\mathbb{P}\Big(\big|R_{\mathcal{T}^m}(h_1) - R(h_1)\big| \ge \varepsilon\Big) = \mathbb{P}\Big(\mathcal{T}^m \in \mathcal{B}(h_1)\Big) \le 2e^{-\frac{2m\varepsilon^2}{(b-a)^2}}$$

ULLN applies for finite hypothesis class

- Assume a finite hypothesis class $\mathcal{H} = \{h_1, \dots, h_K\}$.
- Define the set of all "bad" training sets for a strategy $h \in \mathcal{H}$ as

$$\mathcal{B}(h) = \left\{ \mathcal{T}^m \in (\mathcal{X} \times \mathcal{Y})^m \middle| \left| R_{\mathcal{T}^m}(h) - R(h) \right| \ge \varepsilon \right\}$$



$$\mathbb{P}\Big(\max_{h\in\{h_1,h_2,h_3\}} \left| R_{\mathcal{T}^m}(h) - R(h) \right| \ge \varepsilon \Big) =$$

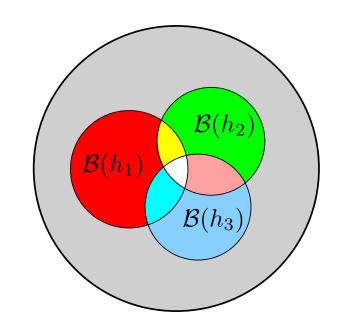
$$\mathbb{P}\Big(\mathcal{T}^m \in \mathcal{B}(h_1) \text{ or } \mathcal{T}^m \in \mathcal{B}(h_2) \text{ or } \mathcal{T}^m \in \mathcal{B}(h_3) \Big) =$$

$$\mathbb{P}\Big(\mathcal{T}^m \in \mathcal{B}(h_1) + \mathbb{P}\Big(\mathcal{T}^m \in \mathcal{B}(h_2)\Big) + \mathbb{P}\Big(\mathcal{T}^m \in \mathcal{B}(h_3)\Big)$$

ULLN applies for finite hypothesis class

- Assume a finite hypothesis class $\mathcal{H} = \{h_1, \dots, h_K\}$.
- lacktriangle Define the set of all "bad" training sets for a strategy $h \in \mathcal{H}$ as

$$\mathcal{B}(h) = \left\{ \mathcal{T}^m \in (\mathcal{X} \times \mathcal{Y})^m \middle| \left| R_{\mathcal{T}^m}(h) - R(h) \right| \ge \varepsilon \right\}$$



Three strategies

$$\mathbb{P}\Big(\max_{h\in\{h_1,h_2,h_3\}} \left| R_{\mathcal{T}^m}(h) - R(h) \right| \ge \varepsilon \Big) =$$

$$\mathbb{P}\Big(\mathcal{T}^m \in \mathcal{B}(h_1) \text{ or } \mathcal{T}^m \in \mathcal{B}(h_2) \text{ or } \mathcal{T}^m \in \mathcal{B}(h_3) \Big) \le$$

$$\mathbb{P}\Big(\mathcal{T}^m \in \mathcal{B}(h_1) + \mathbb{P}\Big(\mathcal{T}^m \in \mathcal{B}(h_2) + \mathbb{P}\Big(\mathcal{T}^m \in \mathcal{B}(h_3) \Big) + \mathbb{P}\Big(\mathcal{T}^m \in \mathcal{B}(h_3) \Big)$$

ULLN applies for finite hypothesis class

- Assume a finite hypothesis class $\mathcal{H} = \{h_1, \dots, h_K\}$.
- lacktriangle Define the set of all "bad" training sets for a strategy $h \in \mathcal{H}$ as

$$\mathcal{B}(h) = \left\{ \mathcal{T}^m \in (\mathcal{X} \times \mathcal{Y})^m \middle| \left| R_{\mathcal{T}^m}(h) - R(h) \right| \ge \varepsilon \right\}$$

ullet Hoeffding inequality generalized for finite hypothesis class \mathcal{H} :

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}} |R_{\mathcal{T}^m}(h) - R(h)| \ge \varepsilon\Big) \le \sum_{h\in\mathcal{H}} \mathbb{P}\big(\mathcal{T}^m \in \mathcal{B}(h)\big) = 2|\mathcal{H}| e^{-\frac{2m\varepsilon^2}{(b-a)^2}}$$

ULLN applies for finite hypothesis class

- Assume a finite hypothesis class $\mathcal{H} = \{h_1, \dots, h_K\}$.
- lacktriangle Define the set of all "bad" training sets for a strategy $h \in \mathcal{H}$ as

$$\mathcal{B}(h) = \left\{ \mathcal{T}^m \in (\mathcal{X} \times \mathcal{Y})^m \middle| \left| R_{\mathcal{T}^m}(h) - R(h) \right| \ge \varepsilon \right\}$$

lacktriangle Hoeffding inequality generalized for finite hypothesis class \mathcal{H} :

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}} \left| R_{\mathcal{T}^m}(h) - R(h) \right| \ge \varepsilon \Big) \le \sum_{h\in\mathcal{H}} \mathbb{P}\big(\mathcal{T}^m \in \mathcal{B}(h)\big) = 2 \left| \mathcal{H} \right| e^{-\frac{2m\,\varepsilon^2}{(b-a)^2}}$$

ULLN applies for finite hypothesis class

$$\forall \varepsilon > 0: \lim_{m \to \infty} \mathbb{P}\Big(\max_{h \in \mathcal{H}} |R_{\mathcal{T}^m}(h) - R(h)| \ge \varepsilon\Big) = 0$$

10/12

ullet Hoeffding inequality generalized for a finite hypothesis class \mathcal{H} :

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h)-R(h)|\geq\varepsilon\Big)\leq 2|\mathcal{H}|e^{-\frac{2m\,\varepsilon^2}{(b-a)^2}}$$

10/12

lacktriangle Hoeffding inequality generalized for a finite hypothesis class \mathcal{H} :

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h)-R(h)|\geq\varepsilon\Big)\leq 2|\mathcal{H}|e^{-\frac{2m\,\varepsilon^2}{(b-a)^2}}$$

• Find an upper bound ε on the discrepancy between $R_{\mathcal{T}^m}(h)$ and R(h) which holds uniformly for all $h \in \mathcal{H}$ with probability $1 - \delta$ at least:

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h) - R(h)| < \varepsilon\Big) = 1 - \mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h) - R(h)| \ge \varepsilon\Big)$$
$$> 1 - 2|\mathcal{H}|e^{-\frac{2m\,\varepsilon^2}{(b-a)^2}} = 1 - \delta$$

and solving the last equality for ε yields

$$\varepsilon = (b - a)\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}$$

11/12

Theorem: Let $\mathcal{T}^m = \{(x^1, y^1), \dots, (x^m, y^m)\} \in (\mathcal{X} \times \mathcal{Y})^m$ be draw from i.i.d. rv. with p.d.f. p(x,y) and let \mathcal{H} be a finite hypothesis class. Then, for any $0 < \delta < 1$, with probability at least $1 - \delta$ the inequality

$$R(h) \leq \underbrace{R_{\mathcal{T}^m}(h)}_{\text{empirical risk}} + \underbrace{(b-a)\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}}_{\text{complexity term}}$$

holds for all $h \in \mathcal{H}$ simultaneously and any loss function $\ell \colon \mathcal{Y} \times \mathcal{Y} \to [a, b]$.

m b

Generalization bound for finite hypothesis class

11/12

Theorem: Let $\mathcal{T}^m=\{(x^1,y^1),\ldots,(x^m,y^m)\}\in(\mathcal{X}\times\mathcal{Y})^m$ be draw from i.i.d. rv. with p.d.f. p(x,y) and let \mathcal{H} be a finite hypothesis class. Then, for any $0<\delta<1$, with probability at least $1-\delta$ the inequality

$$R(h) \leq \underbrace{R_{\mathcal{T}^m}(h)}_{\text{empirical risk}} + \underbrace{(b-a)\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}}_{\text{complexity term}}$$

holds for all $h \in \mathcal{H}$ simultaneously and any loss function $\ell \colon \mathcal{Y} \times \mathcal{Y} \to [a, b]$.

- Recommendations that follow from the generalization bound:
 - 1. Minimize the empirical risk.
 - 2. Use as much training examples as possible.
 - 3. Limit the size of the hypothesis space $|\mathcal{H}|$:

Note that 1) and 3) are conflicting recommendations.

11/12

Theorem: Let $\mathcal{T}^m = \{(x^1, y^1), \dots, (x^m, y^m)\} \in (\mathcal{X} \times \mathcal{Y})^m$ be draw from i.i.d. rv. with p.d.f. p(x,y) and let \mathcal{H} be a finite hypothesis class. Then, for any $0 < \delta < 1$, with probability at least $1 - \delta$ the inequality

$$R(h) \leq \underbrace{R_{\mathcal{T}^m}(h)}_{\text{empirical risk}} + \underbrace{(b-a)\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}}_{\text{complexity term}}$$

holds for all $h \in \mathcal{H}$ simultaneously and any loss function $\ell \colon \mathcal{Y} \times \mathcal{Y} \to [a, b]$.

- Recommendations that follow from the generalization bound:
 - 1. Minimize the empirical risk.
 - 2. Use as much training examples as possible.
 - 3. Limit the size of the hypothesis space $|\mathcal{H}|$: Note that 1) and 3) are conflicting recommendations.
- ◆ The generalization bound holds for any learning algorithm not just ERM.

m b

12/1

lacktriangle Learn $h\colon \mathcal{X} o \mathcal{Y}$ by minimizing the generalization bound

$$R(h) \le R_{\mathcal{T}^m}(h) + \underbrace{(b-a)\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}}_{\epsilon(m,|\mathcal{H}|,\delta)}$$

12/1

lacktriangle Learn $h\colon \mathcal{X} o \mathcal{Y}$ by minimizing the generalization bound

$$R(h) \le R_{\mathcal{T}^m}(h) + \underbrace{(b-a)\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}}_{\epsilon(m,|\mathcal{H}|,\delta)}$$

Design a nested sequence of hypothesis classes

$$\mathcal{H}_1 \subset \mathcal{H}_2 \subset \cdots \subset \mathcal{H}_K$$

Structural Risk Minimization

lacktriangle Learn $h\colon \mathcal{X} o \mathcal{Y}$ by minimizing the generalization bound

$$R(h) \le R_{\mathcal{T}^m}(h) + \underbrace{(b-a)\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}}_{\epsilon(m,|\mathcal{H}|,\delta)}$$

Design a nested sequence of hypothesis classes

$$\mathcal{H}_1 \subset \mathcal{H}_2 \subset \cdots \subset \mathcal{H}_K$$

- Minimize the generalization bound:
 - 1. $h_i = \underset{h \in \mathcal{H}_i}{\operatorname{argmin}} R_{\mathcal{T}^m}(h), \quad \forall i \in \{1, \dots, K\}$
 - 2. $i^* = \underset{i=1,...,K}{\operatorname{argmin}} \left(R_{\mathcal{T}^m}(h_i) + \epsilon(m, |\mathcal{H}_i|, \delta) \right)$
 - 3. Output h_{i^*}

Structural Risk Minimization

lacktriangle Learn $h\colon \mathcal{X} o \mathcal{Y}$ by minimizing the generalization bound

$$R(h) \le R_{\mathcal{T}^m}(h) + \underbrace{(b-a)\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}}_{\epsilon(m,|\mathcal{H}|,\delta)}$$

