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Learning

� The goal: Find a strategy h : X → Y minimizing R(h) using the
training set of examples

T m = {(xi, yi) ∈ (X × Y) | i = 1, . . . ,m}

drawn from i.i.d. according to unknown p(x, y).

� Hypothesis class:
H ⊆ YX = {h : X → Y}

� Learning algorithm: a function

A : ∪∞m=1 (X × Y)m→ H

which returns a strategy hm = A(T m) for a training set T m
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� The ERM based algorithm returns hm such that

hm ∈ Argmin
h∈H

RT m(h) (1)

� Depending on the choince of H and ` and algorithm solving (1) we get
individual instances e.g. Support Vector Machines, Linear Regression,
Logistic Regression, Neural Networks learned by back-propagation,
AdaBoost, Gradient Boosted Trees, ...
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Learning: Empirical Risk Minimization approach

� The expected risk R(h), i.e. the true but unknown objective, is replaced
by the empirical risk computed from the training examples T m,

RT m(h) =
1

m

m∑
i=1

`(yi, h(xi))
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Example of ERM failure

� Let X = [a, b] ⊂ R, Y = {+1,−1}, `(y, y′) = [[y 6= y′]], p(x | y = +1)

and p(x | y = −1) be uniform distributions on X and p(y = +1) = 0.8.

� The optimal strategy is h(x) = +1 with the Bayes risk R∗ = 0.2.

� Consider learning algorithm which for a given training set
T m = {(x1, y1), . . . , (xm, ym)} returns memorizing strategy

hm(x) =

{
yj if x = xj for some j ∈ {1, . . . ,m}
−1 otherwise

� The empirical risk is RT m(hm) = 0 with probability 1 for any m.

� The expected risk is R(hm) = 0.8 for any m.
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Generalization error

� ERM may fail when RT m(hm) is not a good proxy of R(hm), because
RT m(h) is used as a guidance to select hm.

� We need the generalization error, i.e., the discrepancy between R(h)
and RT m(h), to become small when the number of examples m grows:

∀ ε > 0: lim
m→∞

P
( ∣∣RT m(hm)−R(hm)∣∣ ≥ ε︸ ︷︷ ︸

high generalization error

)
= 0

where hm = A(Tm) is learned by A : ∪∞m=1 (X × Y)m→ H.

Plan for this lecture:

� Conditions on H which guarantee that the generalization error
converges to zero with growing number of examples m.

� Generalization bound for a finite number of examples.
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What’s wrong with Hoeffding ?

� Hoeffding inequality P(|µ̂− µ| ≥ ε) ≤ 2e
− 2mε2

(b−a)2 , µ̂ = 1
m

∑m
i=1 z

i,
requires {z1, . . . , zm} to be sample from i.i.d. rv. with expeted value µ.

� T m = {(x1, y1), . . . , (xm, ym)} is drawn from i.i.d. rv. with p(x, y).

Evaluation:

� h fixed independently on T m, zi = `(yi, h(xi)) and {z1, . . . , zm} is i.i.d.

� Therefore ∀ ε > 0: limm→∞ P(|RT m(h)−R(h)| ≥ ε) = 0

Learning:

� hm = A(T m), zi = `(yi, hm(x
i)) and thus {z1, . . . , zm} is not i.i.d.

� No guarantee that ∀ ε > 0: limm→∞ P(|RT m(hm)−R(hm)| ≥ ε) = 0
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� Uniform Law of Large Numbers: if for any p(x, y) generating T m it holds
that

∀ ε > 0: lim
m→∞

P
(
sup
h∈H

∣∣R(h)−RT m(h)∣∣ ≥ ε︸ ︷︷ ︸
high generalization error at least

for one hypothesis

)
= 0

we say that ULLN applies for H.

� Note that for hm = A(Tm) we have

P
(∣∣R(hm)−RT m(hm)∣∣ ≥ ε) ≤ P

(
sup
h∈H

∣∣R(h)−RT m(h)∣∣ ≥ ε)

7/11
Uniform Law of Large Numbers

� Law of Large Numbers: for any p(x, y) generating T m, and h ∈ H fixed
without seeing T m we have

∀ ε > 0: lim
m→∞

P
( ∣∣R(h)−RT m(h)∣∣ ≥ ε︸ ︷︷ ︸

high generalization error

)
= 0
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� Hoeffding inequality generalized for finite hypothesis class H:

P
(
max
h∈H

∣∣RT m(h)−R(h)∣∣ ≥ ε) ≤ ∑
h∈H

P
(
T m ∈ B(h)

)
) = 2 |H| e−

2mε2

(b−a)2

� ULLN applies for finite hypothesis class

∀ ε > 0: lim
m→∞

P
(
max
h∈H
|RT m(h)−R(h)| ≥ ε

)
= 0
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ULLN applies for finite hypothesis class

� Assume a finite hypothesis class H = {h1, . . . , hK}.
� Define the set of all “bad” training sets for a strategy h ∈ H as

B(h) =
{
T m ∈ (X × Y)m

∣∣∣∣∣RT m(h)−R(h)∣∣ ≥ ε}
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Generalization bound for finite hypothesis class

� Hoeffding inequality generalized for a finite hypothesis class H:

P
(
max
h∈H
|RT m(h)−R(h)| ≥ ε

)
≤ 2|H|e−

2mε2

(b−a)2

� Find an upper bound ε on the generalization error which holds uniformly
for all h ∈ H with probability 1− δ at least:

P
(
max
h∈H
|RT m(h)−R(h)| < ε

)
= 1− P

(
max
h∈H
|RT m(h)−R(h)| ≥ ε

)
≥ 1− 2|H|e−

2mε2

(b−a)2 = 1− δ

and solving the last equality for ε yields

ε = (b− a)

√
log 2|H|+ log 1

δ

2m
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Generalization bound for finite hypothesis class

Theorem: Let T m = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m be draw from
i.i.d. rv. with p.d.f. p(x, y) and let H be a finite hypothesis class and. Then,
for any 0 < δ < 1, with probability at least 1− δ the inequality

R(h) ≤ RT m(h) + (b− a)

√
log 2|H|+ log 1

δ

2m

holds for all h ∈ H simultaneously and any loss function ` : Y × Y → [a, b].

Recommendations that follow from the bound:

� We need to select appropriate trade-off between |H| and m:

� Little prior knowledge requires a lot of examples.

� Too complex hypothesis class may lead to overfitting.
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H1 Hi∗ HK

ε(m, |H|, δ)

RT m(h)

h1 hi∗ hK
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Structural Risk Minimization

� Learn h : X → Y by minimizing the generalization bound

R(h) ≤ RT m(h) + (b− a)

√
log 2|H|+ log 1

δ

2m︸ ︷︷ ︸
ε(m,|H|,δ)

http://cmp.felk.cvut.cz

	First page
	Learning
	Learning: Empirical Risk Minimization approach
	Example of ERM failure
	Generalization error
	What's wrong with Hoeffding ?
	Uniform Law of Large Numbers
	ULLN applies for finite hypothesis class
	Generalization bound for finite hypothesis class 
	Generalization bound for finite hypothesis class 
	Structural Risk Minimization
	Last page

