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Recap of the previous lecture

� We bounded the probability that empirical risk RT m(hm) is not a good
proxy of true risk R(hm) where hm = A(T m) is a learned from T m:

P
(∣∣∣R(hm)−RT m(hm)∣∣∣ ≥ ε) ≤︸︷︷︸

uniform
bound

P
(
sup
h∈H

∣∣∣R(h)−RT m(h)∣∣∣ ≥ ε)

≤︸︷︷︸
union
bound

∑
h∈H

P
(∣∣∣R(h)−RT m(h)∣∣∣ ≥ ε) ≤︸︷︷︸

Hoeffding
inequality

2|H|e−
2mε2

(b−a)2 = B(m, |H|, ε)
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inequality

2|H|e−
2mε2

(b−a)2 = B(m, |H|, ε)

� We derived a generalization bound:

R(h) ≤ RT m(h) + (b− a)

√
log 2|H|+ log 1

δ

2m
, ∀h ∈ H

� This lecture answers the following quations:
• How to deal with infinite hypothesis space H ?
• How to define a good learning algorithm? Is ERM good?
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Linear classifier minimizing classification error

� X is a set of observations and Y = {+1,−1} a set of hidden labels

� φ : X → Rn is fixed feature map embedding X to Rn

� Task: find linear classification strategy h : X → Y

h(x;w, b) = sign(〈w,φ(x)〉+ b) =

{
+1 if 〈w,φ(x)〉+ b ≥ 0

−1 if 〈w,φ(x)〉+ b < 0

with minimal expected risk

R0/1(h) = E(x,y)∼p

(
`0/1(y, h(x))

)
where `0/1(y, y′) = [[y 6= y′]]

� We are given a set of training examples

T m = {(xi, yi) ∈ (X × Y) | i = 1, . . . ,m}

drawn from i.i.d. with the distribution p(x, y).
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ERM learning for linear classifiers

� ERM for H = {h(x;w, b) = sign(〈w,φ(x)〉+ b) | (w, b) ∈ Rn+1} leads
to

(w∗, b∗) ∈ Argmin
h∈H

R
0/1
T m(h) = Argmin

(w,b)∈(Rn×R)
R

0/1
T m(h(·;w, b)) (1)

where the empirical risk is

R
0/1
T m(h(·;w, b)) =

1

m

m∑
i=1

[[yi 6= h(xi;w, b)]]
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where the empirical risk is

R
0/1
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� Algorithmic issues (next lecture): in general, there is no known
algorithm solving the task (1) in time polynomial in m.

� Does ULLN applies for the class of two-class linear classifiers?
Recall that ULLN ∀ ε > 0: P

(
suph∈H

∣∣R0/1(h)−R0/1
T m(h)

∣∣ ≥ ε ) = 0
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Vapnik-Chervonenkis (VC) dimension

� VC dimension is a concept to measure complexity of an infinite
hypothesis space H ⊆ {−1,+1}X .
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� VC dimension is a concept to measure complexity of an infinite
hypothesis space H ⊆ {−1,+1}X .

Definition: Let H ⊆ {−1,+1}X and {x1, . . . , xm} ∈ Xm be a set of m
input observations. The set {x1, . . . , xm} is said to be shattered by H if for
all y ∈ {+1,−1}m there exists h ∈ H such that h(xi) = yi, i ∈ {1, . . . ,m}.

Definition: Let H ⊆ {−1,+1}X . The Vapnik-Chervonenkis dimension of H
is the cardinality of the largest set of points from X which can be shattered
by H.
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VC dimension of class of two-class linear classifiers

Theorem: The VC-dimension of the hypothesis class of all two-class linear
classifiers operating in n-dimensional feature space
H = {h(x;w, b) = sign(〈w,φ(x)〉+ b) | (w, b) ∈ (Rn × R)} is n+ 1.
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VC dimension of class of two-class linear classifiers

Theorem: The VC-dimension of the hypothesis class of all two-class linear
classifiers operating in n-dimensional feature space
H = {h(x;w, b) = sign(〈w,φ(x)〉+ b) | (w, b) ∈ (Rn × R)} is n+ 1.

Example for n = 2-dimensional feature space
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ULLN for two class predictors and 0/1-loss

Theorem: Let H ⊆ {+1,−1}X be a hypothesis class with VC dimension
d <∞ and T m = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m a training set draw
from i.i.d. rand vars with distribution p(x, y). Then

∀ ε > 0: P
(
sup
h∈H

∣∣∣R0/1(h)−R0/1
T m(h)

∣∣∣ ≥ ε) ≤ 4

(
2 em

d

)d
e−

m ε2

8
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Corollary: Let H ⊆ {+1,−1}X be a hypothesis class with VC dimension
d <∞. Then ULLN applies.
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Summary: uniform law of large numbers

� We learned how to bound deviation between the empirical and the true
risk uniformly for:

• Finite hypothesis class H = {h1, . . . , hK}:

P
(
max
h∈H
|RT m(h)−R(h)| ≥ ε

)
≤ 2|H|e−

2mε2

(b−a)2 = B1(m, |H|, ε)

• Two-class classifiers H ⊆ {+1,−1}X a finite VC-dimensions d:

P
(
sup
h∈H

∣∣∣R0/1(h)−R0/1
T m(h)

∣∣∣ ≥ ε) ≤ 4

(
2 em

d

)d
e−

m ε2

8 = B2(m, d, ε)

In both cases the bound goes to zero, i.e., ULLN applies.
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8 = B2(m, d, ε)

In both cases the bound goes to zero, i.e., ULLN applies.

� Does ERM algorithm hm ∈ Argmin
h∈H

RT m(h) finds strategy with the

minimal risk R(h)?
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Excess error = Estimation error + Approximation error
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Note that:
� The approximation error depends on H.
� The estimation error is random and depends on H, m and A.
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Universally statistically consistent learning algorithm

� A good algorihtm hm = A(T m) for H can make the estimation error
R(hm)−R(hH) arbitrarily small if it has enough examples m.
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R(hm)−R(hH) arbitrarily small if it has enough examples m.

Definition: Let H ⊆ YX be a hypothesis space and hH ∈ Argminh∈HR(h)

the best strategy in H. The algorithm A : ∪∞m=1 (X × Y)m→ H is
universally statistically consistent in H if there exists a function
mH : (0, 1)

2→ N such that, for every ε, δ ∈ (0, 1), if m ≥ mH(ε, δ) then
with probability 1− δ it holds that

R(hm)−R(hH) ≤ ε

where hm = A(T m) is learned on T m generated i.i.d. from p(x, y).
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� A good algorihtm hm = A(T m) for H can make the estimation error
R(hm)−R(hH) arbitrarily small if it has enough examples m.

Definition: Let H ⊆ YX be a hypothesis space and hH ∈ Argminh∈HR(h)

the best strategy in H. The algorithm A : ∪∞m=1 (X × Y)m→ H is
universally statistically consistent in H if there exists a function
mH : (0, 1)

2→ N such that, for every ε, δ ∈ (0, 1), if m ≥ mH(ε, δ) then
with probability 1− δ it holds that

R(hm)−R(hH) ≤ ε

where hm = A(T m) is learned on T m generated i.i.d. from p(x, y).

� Equivalently we can say that algorithm is univ. stat. consistent in H iff

∀ ε > 0: lim
m→∞

P
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� When is ERM based algorithm universally statistically consistent?
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Theorem: ULLN implies universal consistency of ERM

For fixed T m and hm ∈ Argminh∈HRT m(h) we have:

R(hm)−R(hH) =
(
R(hm)−RT m(hm)

)
+

(
RT m(hm)−R(hH)

)
≤
(
R(hm)−RT m(hm)

)
+

(
RT m(hH)−R(hH)

)
≤ 2 sup

h∈H

∣∣∣∣R(h)−RT m(h)∣∣∣∣
Therefore ε ≤ R(hm)−R(hH) implies ε2 ≤ suph∈H

∣∣∣∣R(h)−RT m(h)∣∣∣∣ and
P
(
R(hm)−R(hH) ≥ ε

)
≤ P

(
sup
h∈H

∣∣∣∣R(h)−RT m(h)∣∣∣∣ ≥ ε

2

)
so if converges the RHS to zero (ULLN) so does the LHS (estimation error).
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Universal consistency for ERM algorithms

� We have shown relation between the estimation error and the uniform
bound on the empirical risk:

P
(
R(hm)−R(hH) ≥ ε

)
≤ P

(
sup
h∈H

∣∣∣R(h)−RT m(h)∣∣∣ ≥ ε

2

)
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� We have shown relation between the estimation error and the uniform
bound on the empirical risk:

P
(
R(hm)−R(hH) ≥ ε

)
≤ P

(
sup
h∈H

∣∣∣R(h)−RT m(h)∣∣∣ ≥ ε

2

)
� We have shown ULLN for:

• Finite hypothesis class H = {h1, . . . , hK}:

P
(
max
h∈H
|RT m(h)−R(h)| ≥ ε

)
≤ 2|H|e−

2mε2

(b−a)2 = B1(m, |H|, ε)

• Two-class classifiers H ⊆ {+1,−1}X a finite VC-dimensions d:

P
(
sup
h∈H

∣∣∣R0/1(h)−R0/1
T m(h)

∣∣∣ ≥ ε) ≤ 4

(
2 em

d

)d
e−

m ε2

8 = B2(m, d, ε)
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(
max
h∈H
|RT m(h)−R(h)| ≥ ε

)
≤ 2|H|e−
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(b−a)2 = B1(m, |H|, ε)

• Two-class classifiers H ⊆ {+1,−1}X a finite VC-dimensions d:

P
(
sup
h∈H

∣∣∣R0/1(h)−R0/1
T m(h)

∣∣∣ ≥ ε) ≤ 4

(
2 em

d

)d
e−

m ε2

8 = B2(m, d, ε)

Corollary: If H ⊆ YX is finite or H ⊆ {−1,+1}X has finite VC-dimension,
then ERM algorithm is universally consistent in H.
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Bound on the number of training examples for finite
hypothesis space

� For finite hypothesis space we derived that

P
(
R(hm)−R(hH) ≥ ε

)
≤ P

(
sup
h∈H

∣∣∣R(h)−RT m(h)∣∣∣ ≥ ε

2

)
≤ 2|H|e−

mε2

2(b−a)2
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Bound on the number of training examples for finite
hypothesis space

� For finite hypothesis space we derived that

P
(
R(hm)−R(hH) ≥ ε

)
≤ P

(
sup
h∈H

∣∣∣R(h)−RT m(h)∣∣∣ ≥ ε

2

)
≤ 2|H|e−

mε2

2(b−a)2

Corollary: Let H ⊆ YX be a finite hypothesis space and
hH ∈ Argminh∈HR(h) the best strategy in H. For very ε, δ ∈ (0, 1), let us
define mH : (0, 1)2→ N such that

mH(ε, δ) =
2(log 2|H| − log δ)

ε2
(`max − `min)2 .

Let hm ∈ Argminh∈HRT m(h) be a strategy learned by ERM algorithm from
m ≥ mH(ε, δ) training examples T m generated i.i.d. from some p(x, y).
Then, with probability 1− δ at least it holds that

R(hm)−R(hH) ≤ ε .

http://cmp.felk.cvut.cz




-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

0.1

0.2

0.3



-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

0.1

0.2

0.3



-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

0.1

0.2

0.3



-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

0.1

0.2

0.3



-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

0.1

0.2

0.3



-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

0.1

0.2

0.3



-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

0.1

0.2

0.3



0.0

0.2

0.4

0.6

0.8

AAAAAAA

AAAAAA
p(x,y=-1)
p(x,y=+1)



0.0

0.2

0.4

0.6

0.8

R(hH)

hH
AAAAAAA

AAAAAA
p(x,y=-1)
p(x,y=+1)
R(h)



0.0

0.2

0.4

0.6

0.8

m=20

AAAAAAA

AAAAAA
R(h)
RTm(h)



0.0

0.2

0.4

0.6

0.8

R(h) +

R(h)m=20

AAAAAAA

AAAAAA
R(h)
RTm(h)



0.0

0.2

0.4

0.6

0.8

R(h) +

R(h)m=100

AAAAAAA

AAAAAA
R(h)
RTm(h)



0.0

0.2

0.4

0.6

0.8

R(h) +

R(h)m=1000

AAAAAAA

AAAAAA
R(h)
RTm(h)



0.0

0.2

0.4

0.6

0.8

AAAAAAA

AAAAAA
R(h)
RTm(h)



0.0

0.2

0.4

0.6

0.8

R(hH)

hH
AAAAAAA

AAAAAA
R(h)
RTm(h)



0.0

0.2

0.4

0.6

0.8

R(hH)

hH

R(hm)

hm

RTm(hm)

AAAAAAA

AAAAAA
R(h)
RTm(h)



0.0

0.2

0.4

0.6

0.8

R(hH)

hH

R(hm)

hm

RTm(hm)

AAAAAAA

AAAAAA
R(h)
RTm(h)



0.0

0.2

0.4

0.6

0.8

R(hH)

hH

R(hm)

hm

RTm(hm)

AAAAAAA

AAAAAA
R(h)
RTm(h)



0.0

0.2

0.4

0.6

0.8

R(hH)

hH

R(hm)

hm

RTm(hm)

AAAAAAA

AAAAAA
R(h)
RTm(h)


	First page
	Recap of the previous lecture
	Linear classifier minimizing classification error
	ERM learning for linear classifiers
	Vapnik-Chervonenkis (VC) dimension
	VC dimension of class of two-class linear classifiers
	ULLN for two class predictors and $0/1$-loss
	Summary: uniform law of large numbers
	Excess error = Estimation error + Approximation error
	Universally statistically consistent learning algorithm
	ULLN implies universal consistency of ERM
	Theorem: ULLN implies universal consistency of ERM
	Universal consistency for ERM algorithms
	Bound on the number of training examples for finite hypothesis space
	Last page

