Statistical Machine Learning (BE4M33SSU) Lecture 4: Empirical Risk Minimization II

Czech Technical University in Prague V. Franc

BE4M33SSU – Statistical Machine Learning, Winter 2022

Recap of the previous lecture

$$\mathbb{P}\Big(\Big|R(h_m) - R_{\mathcal{T}^m}(h_m)\Big| \ge \varepsilon\Big) \underbrace{\leq}_{\substack{\text{uniform} \\ \text{bound}}} \mathbb{P}\Big(\sup_{h\in\mathcal{H}} \Big|R(h) - R_{\mathcal{T}^m}(h)\Big| \ge \varepsilon\Big) \\
\underbrace{\leq}_{\substack{\text{union} \\ \text{bound}}} \sum_{h\in\mathcal{H}} \mathbb{P}\Big(\Big|R(h) - R_{\mathcal{T}^m}(h)\Big| \ge \varepsilon\Big) \underbrace{\leq}_{\substack{\text{Hoeffding} \\ \text{inequality}}} 2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(b-a)^2}} = B(m, |\mathcal{H}|, \varepsilon)$$

Recap of the previous lecture

$$\mathbb{P}\Big(\Big|R(h_m) - R_{\mathcal{T}^m}(h_m)\Big| \ge \varepsilon\Big) \underbrace{\leq}_{\substack{\text{uniform} \\ \text{bound}}} \mathbb{P}\Big(\sup_{h\in\mathcal{H}} \Big|R(h) - R_{\mathcal{T}^m}(h)\Big| \ge \varepsilon\Big) \\
\underbrace{\leq}_{\substack{\text{union} \\ \text{bound}}} \sum_{h\in\mathcal{H}} \mathbb{P}\Big(\Big|R(h) - R_{\mathcal{T}^m}(h)\Big| \ge \varepsilon\Big) \underbrace{\leq}_{\substack{\text{Hoeffding} \\ \text{inequality}}} 2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(b-a)^2}} = B(m, |\mathcal{H}|, \varepsilon)$$

• We derived a generalization bound:

$$R(h) \le R_{\mathcal{T}^m}(h) + (b-a)\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}, \quad \forall h \in \mathcal{H}$$

Recap of the previous lecture

$$\mathbb{P}\Big(\Big|R(h_m) - R_{\mathcal{T}^m}(h_m)\Big| \ge \varepsilon\Big) \underbrace{\leq}_{\substack{\text{uniform} \\ \text{bound}}} \mathbb{P}\Big(\sup_{h \in \mathcal{H}} \Big|R(h) - R_{\mathcal{T}^m}(h)\Big| \ge \varepsilon\Big) \\
\underbrace{\leq}_{\substack{\text{union} \\ \text{bound}}} \sum_{h \in \mathcal{H}} \mathbb{P}\Big(\Big|R(h) - R_{\mathcal{T}^m}(h)\Big| \ge \varepsilon\Big) \underbrace{\leq}_{\substack{\text{Hoeffding} \\ \text{inequality}}} 2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(b-a)^2}} = B(m, |\mathcal{H}|, \varepsilon)$$

• We derived a generalization bound:

$$R(h) \le R_{\mathcal{T}^m}(h) + (b-a)\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}, \quad \forall h \in \mathcal{H}$$

This lecture answers the following quations:

- How to deal with infinite hypothesis space \mathcal{H} ?
- How to define a good learning algorithm? Is ERM good?

Linear classifier minimizing classification error

- \mathcal{X} is a set of observations and $\mathcal{Y} = \{+1, -1\}$ a set of hidden labels
- $igoplus \phi \colon \mathcal{X} o \mathbb{R}^n$ is fixed feature map embedding \mathcal{X} to \mathbb{R}^n
- Task: find linear classification strategy $h \colon \mathcal{X} \to \mathcal{Y}$

$$h(x; \boldsymbol{w}, b) = \operatorname{sign}(\langle \boldsymbol{w}, \boldsymbol{\phi}(x) \rangle + b) = \begin{cases} +1 & \text{if } \langle \boldsymbol{w}, \boldsymbol{\phi}(x) \rangle + b \ge 0\\ -1 & \text{if } \langle \boldsymbol{w}, \boldsymbol{\phi}(x) \rangle + b < 0 \end{cases}$$

with minimal expected risk

$$R^{0/1}(h) = \mathbb{E}_{(x,y)\sim p} \Big(\ell^{0/1}(y,h(x)) \Big) \quad \text{where} \quad \ell^{0/1}(y,y') = [y \neq y']$$

We are given a set of training examples

$$\mathcal{T}^m = \{ (x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \dots, m \}$$

drawn from i.i.d. with the distribution p(x, y).

ERM learning for linear classifiers

• ERM for
$$\mathcal{H} = \{h(x; w, b) = \operatorname{sign}(\langle w, \phi(x) \rangle + b) \mid (w, b) \in \mathbb{R}^{n+1}\}$$
 leads to

$$(\boldsymbol{w}^*, b^*) \in \operatorname{Argmin}_{h \in \mathcal{H}} R^{0/1}_{\mathcal{T}^m}(h) = \operatorname{Argmin}_{(\boldsymbol{w}, b) \in (\mathbb{R}^n \times \mathbb{R})} R^{0/1}_{\mathcal{T}^m}(h(\cdot; \boldsymbol{w}, b))$$
(1)

where the empirical risk is

$$R_{\mathcal{T}^m}^{0/1}(h(\cdot;\boldsymbol{w},b)) = \frac{1}{m} \sum_{i=1}^m [y^i \neq h(x^i;\boldsymbol{w},b)]$$

ERM learning for linear classifiers

• ERM for
$$\mathcal{H} = \{h(x; w, b) = \operatorname{sign}(\langle w, \phi(x) \rangle + b) \mid (w, b) \in \mathbb{R}^{n+1}\}$$
 leads to

$$(\boldsymbol{w}^*, b^*) \in \operatorname{Argmin}_{h \in \mathcal{H}} R^{0/1}_{\mathcal{T}^m}(h) = \operatorname{Argmin}_{(\boldsymbol{w}, b) \in (\mathbb{R}^n \times \mathbb{R})} R^{0/1}_{\mathcal{T}^m}(h(\cdot; \boldsymbol{w}, b))$$
(1)

where the empirical risk is

$$R_{\mathcal{T}^m}^{0/1}(h(\cdot; \boldsymbol{w}, b)) = \frac{1}{m} \sum_{i=1}^m [y^i \neq h(x^i; \boldsymbol{w}, b)]$$

- Algorithmic issues (next lecture): in general, there is no known algorithm solving the task (1) in time polynomial in m.
- Does ULLN applies for the class of two-class linear classifiers? Recall that ULLN $\forall \varepsilon > 0$: $\mathbb{P}(\sup_{h \in \mathcal{H}} |R^{0/1}(h) - R^{0/1}_{\mathcal{T}^m}(h)| \ge \varepsilon) = 0$

Vapnik-Chervonenkis (VC) dimension

- **(m** p) 5/14
- VC dimension is a concept to measure complexity of an infinite hypothesis space $\mathcal{H} \subseteq \{-1, +1\}^{\mathcal{X}}$.

Vapnik-Chervonenkis (VC) dimension

• VC dimension is a concept to measure complexity of an infinite hypothesis space $\mathcal{H} \subseteq \{-1, +1\}^{\mathcal{X}}$.

Definition: Let $\mathcal{H} \subseteq \{-1, +1\}^{\mathcal{X}}$ and $\{x^1, \ldots, x^m\} \in \mathcal{X}^m$ be a set of m input observations. The set $\{x^1, \ldots, x^m\}$ is said to be shattered by \mathcal{H} if for all $y \in \{+1, -1\}^m$ there exists $h \in \mathcal{H}$ such that $h(x^i) = y^i$, $i \in \{1, \ldots, m\}$.

Vapnik-Chervonenkis (VC) dimension

• VC dimension is a concept to measure complexity of an infinite hypothesis space $\mathcal{H} \subseteq \{-1, +1\}^{\mathcal{X}}$.

Definition: Let $\mathcal{H} \subseteq \{-1, +1\}^{\mathcal{X}}$ and $\{x^1, \ldots, x^m\} \in \mathcal{X}^m$ be a set of m input observations. The set $\{x^1, \ldots, x^m\}$ is said to be shattered by \mathcal{H} if for all $y \in \{+1, -1\}^m$ there exists $h \in \mathcal{H}$ such that $h(x^i) = y^i$, $i \in \{1, \ldots, m\}$.

Definition: Let $\mathcal{H} \subseteq \{-1, +1\}^{\mathcal{X}}$. The Vapnik-Chervonenkis dimension of \mathcal{H} is the cardinality of the largest set of points from \mathcal{X} which can be shattered by \mathcal{H} .

VC dimension of class of two-class linear classifiers

Theorem: The VC-dimension of the hypothesis class of all two-class linear classifiers operating in *n*-dimensional feature space $\mathcal{H} = \{h(x; \boldsymbol{w}, b) = \operatorname{sign}(\langle \boldsymbol{w}, \boldsymbol{\phi}(x) \rangle + b) \mid (\boldsymbol{w}, b) \in (\mathbb{R}^n \times \mathbb{R})\} \text{ is } n+1.$

VC dimension of class of two-class linear classifiers

(2) m p 6/14

Theorem: The VC-dimension of the hypothesis class of all two-class linear classifiers operating in *n*-dimensional feature space $\mathcal{H} = \{h(x; \boldsymbol{w}, b) = \operatorname{sign}(\langle \boldsymbol{w}, \boldsymbol{\phi}(x) \rangle + b) \mid (\boldsymbol{w}, b) \in (\mathbb{R}^n \times \mathbb{R})\}$ is n + 1.

ULLN for two class predictors and 0/1-loss

Theorem: Let $\mathcal{H} \subseteq \{+1, -1\}^{\mathcal{X}}$ be a hypothesis class with VC dimension $d < \infty$ and $\mathcal{T}^m = \{(x^1, y^1), \dots, (x^m, y^m)\} \in (\mathcal{X} \times \mathcal{Y})^m$ a training set draw from i.i.d. rand vars with distribution p(x, y). Then

$$\forall \varepsilon > 0 \colon \mathbb{P}\bigg(\sup_{h \in \mathcal{H}} \left| R^{0/1}(h) - R^{0/1}_{\mathcal{T}^m}(h) \right| \ge \varepsilon \bigg) \le 4 \bigg(\frac{2em}{d} \bigg)^d e^{-\frac{m\varepsilon^2}{8}}$$

ULLN for two class predictors and 0/1-loss

Theorem: Let $\mathcal{H} \subseteq \{+1, -1\}^{\mathcal{X}}$ be a hypothesis class with VC dimension $d < \infty$ and $\mathcal{T}^m = \{(x^1, y^1), \dots, (x^m, y^m)\} \in (\mathcal{X} \times \mathcal{Y})^m$ a training set draw from i.i.d. rand vars with distribution p(x, y). Then

$$\forall \varepsilon > 0 \colon \mathbb{P}\left(\sup_{h \in \mathcal{H}} \left| R^{0/1}(h) - R^{0/1}_{\mathcal{T}^m}(h) \right| \ge \varepsilon \right) \le 4\left(\frac{2em}{d}\right)^d e^{-\frac{m\varepsilon^2}{8}}$$

Corollary: Let $\mathcal{H} \subseteq \{+1, -1\}^{\mathcal{X}}$ be a hypothesis class with VC dimension $d < \infty$. Then ULLN applies.

Summary: uniform law of large numbers

• Finite hypothesis class $\mathcal{H} = \{h_1, \ldots, h_K\}$:

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h)-R(h)|\geq\varepsilon\Big)\leq 2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(b-a)^2}}=B_1(m,|\mathcal{H}|,\varepsilon)$$

• Two-class classifiers $\mathcal{H} \subseteq \{+1, -1\}^{\mathcal{X}}$ a finite VC-dimensions d:

$$\mathbb{P}\left(\sup_{h\in\mathcal{H}}\left|R^{0/1}(h)-R^{0/1}_{\mathcal{T}^m}(h)\right|\geq\varepsilon\right)\leq 4\left(\frac{2\,e\,m}{d}\right)^d e^{-\frac{m\,\varepsilon^2}{8}}=B_2(m,d,\varepsilon)$$

In both cases the bound goes to zero, i.e., ULLN applies.

Summary: uniform law of large numbers

- We learned how to bound deviation between the empirical and the true risk uniformly for:
 - Finite hypothesis class $\mathcal{H} = \{h_1, \ldots, h_K\}$:

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h)-R(h)|\geq\varepsilon\Big)\leq 2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(b-a)^2}}=B_1(m,|\mathcal{H}|,\varepsilon)$$

• Two-class classifiers $\mathcal{H} \subseteq \{+1, -1\}^{\mathcal{X}}$ a finite VC-dimensions d:

$$\mathbb{P}\left(\sup_{h\in\mathcal{H}}\left|R^{0/1}(h)-R^{0/1}_{\mathcal{T}^m}(h)\right|\geq\varepsilon\right)\leq 4\left(\frac{2\,e\,m}{d}\right)^d e^{-\frac{m\,\varepsilon^2}{8}}=B_2(m,d,\varepsilon)$$

In both cases the bound goes to zero, i.e., ULLN applies.

• Does ERM algorithm $h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h)$ finds strategy with the minimal risk R(h)?

The characters of the play:

• $R^* = \inf_{h \in \mathcal{Y}^{\mathcal{X}}} R(h)$ best attainable true risk

The characters of the play:

• $R^* = \inf_{h \in \mathcal{Y}^{\mathcal{X}}} R(h)$ best attainable true risk

- $R^* = \inf_{h \in \mathcal{Y}^{\mathcal{X}}} R(h)$ best attainable true risk
- $R(h_{\mathcal{H}})$ best risk in \mathcal{H} where $h_{\mathcal{H}} \in \operatorname{Argmin}_{h \in \mathcal{H}} R(h)$

- $R^* = \inf_{h \in \mathcal{Y}^{\mathcal{X}}} R(h)$ best attainable true risk
- $R(h_{\mathcal{H}})$ best risk in \mathcal{H} where $h_{\mathcal{H}} \in \operatorname{Argmin}_{h \in \mathcal{H}} R(h)$

- $R^* = \inf_{h \in \mathcal{Y}^{\mathcal{X}}} R(h)$ best attainable true risk
- $R(h_{\mathcal{H}})$ best risk in \mathcal{H} where $h_{\mathcal{H}} \in \operatorname{Argmin}_{h \in \mathcal{H}} R(h)$

- $R^* = \inf_{h \in \mathcal{Y}^{\mathcal{X}}} R(h)$ best attainable true risk
- $R(h_{\mathcal{H}})$ best risk in \mathcal{H} where $h_{\mathcal{H}} \in \operatorname{Argmin}_{h \in \mathcal{H}} R(h)$

- $R^* = \inf_{h \in \mathcal{Y}^{\mathcal{X}}} R(h)$ best attainable true risk
- $R(h_{\mathcal{H}})$ best risk in \mathcal{H} where $h_{\mathcal{H}} \in \operatorname{Argmin}_{h \in \mathcal{H}} R(h)$
- $R(h_m)$ risk of $h_m = A(\mathcal{T}_m)$ learned from \mathcal{T}^m

- $R^* = \inf_{h \in \mathcal{Y}^{\mathcal{X}}} R(h)$ best attainable true risk
- $R(h_{\mathcal{H}})$ best risk in \mathcal{H} where $h_{\mathcal{H}} \in \operatorname{Argmin}_{h \in \mathcal{H}} R(h)$
- $R(h_m)$ risk of $h_m = A(\mathcal{T}_m)$ learned from \mathcal{T}^m

The characters of the play:

- $R^* = \inf_{h \in \mathcal{Y}^{\mathcal{X}}} R(h)$ best attainable true risk
- $R(h_{\mathcal{H}})$ best risk in \mathcal{H} where $h_{\mathcal{H}} \in \operatorname{Argmin}_{h \in \mathcal{H}} R(h)$

• $R(h_m)$ risk of $h_m = A(\mathcal{T}_m)$ learned from \mathcal{T}^m

The characters of the play:

- $\bullet \ R^* = \inf_{h \in \mathcal{Y}^{\mathcal{X}}} R(h) \text{ best attainable true risk}$
- $R(h_{\mathcal{H}})$ best risk in \mathcal{H} where $h_{\mathcal{H}} \in \operatorname{Argmin}_{h \in \mathcal{H}} R(h)$

• $R(h_m)$ risk of $h_m = A(\mathcal{T}_m)$ learned from \mathcal{T}^m

estimation error: $R(h_m) - R(h_H) = 14.2 - 13.9 = 0.3\%$ $h_m(x) = -1$ | $h_m(x) = +1$ 0.3 $R(h_m) = 14.2\%$ 0.2 0.1 0 3 -3 -2 5 2 4 -5 -4 0 1 -1 Х $\mathcal{H} = \{h(x) = \operatorname{sign}(x - \theta) \mid \theta \in \mathbb{R}\}$

The characters of the play:

- $R^* = \inf_{h \in \mathcal{Y}^{\mathcal{X}}} R(h)$ best attainable true risk
- $R(h_{\mathcal{H}})$ best risk in \mathcal{H} where $h_{\mathcal{H}} \in \operatorname{Argmin}_{h \in \mathcal{H}} R(h)$
- $R(h_m)$ risk of $h_m = A(\mathcal{T}_m)$ learned from \mathcal{T}^m

Excess error: the quantity we want to minimize

$$\underbrace{\left(R(h_m) - R^*\right)}_{\text{excess error}} = \underbrace{\left(R(h_m) - R(h_{\mathcal{H}})\right)}_{\text{estimation error}} + \underbrace{\left(R(h_{\mathcal{H}}) - R^*\right)}_{\text{approximation error}}$$

The characters of the play:

- $R^* = \inf_{h \in \mathcal{Y}^{\mathcal{X}}} R(h)$ best attainable true risk
- $R(h_{\mathcal{H}})$ best risk in \mathcal{H} where $h_{\mathcal{H}} \in \operatorname{Argmin}_{h \in \mathcal{H}} R(h)$
- $R(h_m)$ risk of $h_m = A(\mathcal{T}_m)$ learned from \mathcal{T}^m

Excess error: the quantity we want to minimize

$$\underbrace{\left(R(h_m) - R^*\right)}_{\text{excess error}} = \underbrace{\left(R(h_m) - R(h_{\mathcal{H}})\right)}_{\text{estimation error}} + \underbrace{\left(R(h_{\mathcal{H}}) - R^*\right)}_{\text{approximation error}}$$

Note that:

- The approximation error depends on \mathcal{H} .
- ullet The estimation error is random and depends on $\mathcal H$, m and A.

• A good algorihum $h_m = A(\mathcal{T}^m)$ for \mathcal{H} can make the estimation error $R(h_m) - R(h_{\mathcal{H}})$ arbitrarily small if it has enough examples m.

р

Definition: Let $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ be a hypothesis space and $h_{\mathcal{H}} \in \operatorname{Argmin}_{h \in \mathcal{H}} R(h)$ the best strategy in \mathcal{H} . The algorithm $A: \cup_{m=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^m \to \mathcal{H}$ is universally statistically consistent in \mathcal{H} if there exists a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ such that, for every $\varepsilon, \delta \in (0,1)$, if $m \ge m_{\mathcal{H}}(\varepsilon, \delta)$ then with probability $1 - \delta$ it holds that

$$R(h_m) - R(h_{\mathcal{H}}) \le \varepsilon$$

where $h_m = A(\mathcal{T}^m)$ is learned on \mathcal{T}^m generated i.i.d. from p(x, y).

Definition: Let $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ be a hypothesis space and $h_{\mathcal{H}} \in \operatorname{Argmin}_{h \in \mathcal{H}} R(h)$ the best strategy in \mathcal{H} . The algorithm $A: \cup_{m=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^m \to \mathcal{H}$ is universally statistically consistent in \mathcal{H} if there exists a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ such that, for every $\varepsilon, \delta \in (0,1)$, if $m \ge m_{\mathcal{H}}(\varepsilon, \delta)$ then with probability $1 - \delta$ it holds that

$$R(h_m) - R(h_{\mathcal{H}}) \le \varepsilon$$

where $h_m = A(\mathcal{T}^m)$ is learned on \mathcal{T}^m generated i.i.d. from p(x, y).

• Equivalently we can say that algorithm is univ. stat. consistent in ${\cal H}$ iff

$$\forall \varepsilon > 0: \lim_{m \to \infty} \mathbb{P}(R(h_m) - R(h_{\mathcal{H}}) \ge \varepsilon) = 0$$

Definition: Let $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ be a hypothesis space and $h_{\mathcal{H}} \in \operatorname{Argmin}_{h \in \mathcal{H}} R(h)$ the best strategy in \mathcal{H} . The algorithm $A: \cup_{m=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^m \to \mathcal{H}$ is universally statistically consistent in \mathcal{H} if there exists a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ such that, for every $\varepsilon, \delta \in (0,1)$, if $m \ge m_{\mathcal{H}}(\varepsilon, \delta)$ then with probability $1 - \delta$ it holds that

$$R(h_m) - R(h_{\mathcal{H}}) \le \varepsilon$$

where $h_m = A(\mathcal{T}^m)$ is learned on \mathcal{T}^m generated i.i.d. from p(x, y).

ullet Equivalently we can say that algorithm is univ. stat. consistent in ${\cal H}$ iff

$$\forall \varepsilon > 0: \lim_{m \to \infty} \mathbb{P}(R(h_m) - R(h_{\mathcal{H}}) \ge \varepsilon) = 0$$

• When is ERM based algorithm universally statistically consistent?

$$\mathbb{P}\left(\sup_{h\in\mathcal{H}}\left|R(h)-R_{\mathcal{T}^{m}}(h)\right|\geq\varepsilon\right)\leq B(m,\mathcal{H},\varepsilon)$$

$$\mathbb{P}\left(\sup_{h\in\mathcal{H}}\left|R(h)-R_{\mathcal{T}^{m}}(h)\right|\geq\varepsilon\right)\leq B(m,\mathcal{H},\varepsilon)$$

$$\mathbb{P}\left(\sup_{h\in\mathcal{H}}\left|R(h)-R_{\mathcal{T}^{m}}(h)\right|\geq\varepsilon\right)\leq B(m,\mathcal{H},\varepsilon)$$

$$\mathbb{P}\left(\sup_{h\in\mathcal{H}}\left|R(h)-R_{\mathcal{T}^m}(h)\right|\geq\varepsilon\right)\leq B(m,\mathcal{H},\varepsilon)$$

$$\mathbb{P}\left(\sup_{h\in\mathcal{H}}\left|R(h)-R_{\mathcal{T}^{m}}(h)\right|\geq\varepsilon\right)\leq B(m,\mathcal{H},\varepsilon)$$

$$\mathbb{P}\Big(\sup_{h\in\mathcal{H}} |R(h) - R_{\mathcal{T}^m}(h)| \ge \varepsilon\Big) \le B(m,\mathcal{H},\varepsilon)$$

empirical risk fails for some $h \in \mathcal{H}$

$$\underbrace{R(h_m) - R(h_{\mathcal{H}})}_{H}$$

estimation error

$$\mathbb{P}\left(\sup_{\substack{h\in\mathcal{H}\\ empirical risk fails for some h\in\mathcal{H}}} |R(h) - R_{\mathcal{T}^m}(h)| \ge \varepsilon\right) \le B(m, \mathcal{H}, \varepsilon)$$
empirical risk fails for some h $\in\mathcal{H}$

$$\mathbb{P}\left(\underbrace{R(h_m) - R(h_{\mathcal{H}})}_{\text{estimation error}} \ge \varepsilon\right) \le \mathbb{P}\left(\underbrace{\sup_{\substack{h\in\mathcal{H}\\ empirical risk fails for some h\in\mathcal{H}}} |R(h) - R_{\mathcal{T}^m}(h)| \ge \frac{\varepsilon}{2}\right)$$

$$\mathcal{H} = \{h(x) = \operatorname{sign}(x - \theta) | \theta \in \mathbb{R}\}, \ \ell(y, y') = [y \neq y']$$

$$0.8 \qquad R(h)$$

$$R(h_{\mathcal{H}})$$

$$0.4 \qquad R(h_{\mathcal{H}})$$

$$0.4 \qquad R(h_{\mathcal{H}})$$

$$R(h_{\mathcal{H}})$$

$$R(h_{\mathcal{H}})$$

$$R(h_{\mathcal{H}})$$

$$R(h_{\mathcal{H}})$$

$$R(h_{\mathcal{H}})$$

$$R(h_{\mathcal{H}})$$

Ð

m p

11/14

For fixed \mathcal{T}^m and $h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h)$ we have:

$$R(h_m) - R(h_{\mathcal{H}}) = \left(R(h_m) - R_{\mathcal{T}^m}(h_m) \right) + \left(R_{\mathcal{T}^m}(h_m) - R(h_{\mathcal{H}}) \right)$$
$$\leq \left(R(h_m) - R_{\mathcal{T}^m}(h_m) \right) + \left(R_{\mathcal{T}^m}(h_{\mathcal{H}}) - R(h_{\mathcal{H}}) \right)$$
$$\leq 2 \sup_{h \in \mathcal{H}} \left| R(h) - R_{\mathcal{T}^m}(h) \right|$$

Therefore $\varepsilon \leq R(h_m) - R(h_{\mathcal{H}})$ implies $\frac{\varepsilon}{2} \leq \sup_{h \in \mathcal{H}} \left| R(h) - R_{\mathcal{T}^m}(h) \right|$ and

$$\mathbb{P}\bigg(R(h_m) - R(h_{\mathcal{H}}) \ge \varepsilon\bigg) \le \mathbb{P}\bigg(\sup_{h \in \mathcal{H}} \left|R(h) - R_{\mathcal{T}^m}(h)\right| \ge \frac{\varepsilon}{2}\bigg)$$

so if converges the RHS to zero (ULLN) so does the LHS (estimation error).

Universal consistency for ERM algorithms

 We have shown relation between the estimation error and the uniform bound on the empirical risk:

$$\mathbb{P}\Big(R(h_m) - R(h_{\mathcal{H}}) \ge \varepsilon\Big) \le \mathbb{P}\Big(\sup_{h \in \mathcal{H}} \left|R(h) - R_{\mathcal{T}^m}(h)\right| \ge \frac{\varepsilon}{2}\Big)$$

Universal consistency for ERM algorithms

 We have shown relation between the estimation error and the uniform bound on the empirical risk:

$$\mathbb{P}\Big(R(h_m) - R(h_{\mathcal{H}}) \ge \varepsilon\Big) \le \mathbb{P}\Big(\sup_{h \in \mathcal{H}} \left|R(h) - R_{\mathcal{T}^m}(h)\right| \ge \frac{\varepsilon}{2}\Big)$$

• We have shown ULLN for:

• Finite hypothesis class $\mathcal{H} = \{h_1, \ldots, h_K\}$:

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h)-R(h)|\geq\varepsilon\Big)\leq 2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(b-a)^2}}=B_1(m,|\mathcal{H}|,\varepsilon)$$

• Two-class classifiers $\mathcal{H} \subseteq \{+1, -1\}^{\mathcal{X}}$ a finite VC-dimensions d:

$$\mathbb{P}\left(\sup_{h\in\mathcal{H}}\left|R^{0/1}(h)-R^{0/1}_{\mathcal{T}^m}(h)\right|\geq\varepsilon\right)\leq 4\left(\frac{2\,e\,m}{d}\right)^d e^{-\frac{m\,\varepsilon^2}{8}}=B_2(m,d,\varepsilon)$$

Universal consistency for ERM algorithms

 We have shown relation between the estimation error and the uniform bound on the empirical risk:

$$\mathbb{P}\Big(R(h_m) - R(h_{\mathcal{H}}) \ge \varepsilon\Big) \le \mathbb{P}\Big(\sup_{h \in \mathcal{H}} \left|R(h) - R_{\mathcal{T}^m}(h)\right| \ge \frac{\varepsilon}{2}\Big)$$

• We have shown ULLN for:

• Finite hypothesis class $\mathcal{H} = \{h_1, \ldots, h_K\}$:

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h)-R(h)|\geq\varepsilon\Big)\leq 2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(b-a)^2}}=B_1(m,|\mathcal{H}|,\varepsilon)$$

• Two-class classifiers $\mathcal{H} \subseteq \{+1, -1\}^{\mathcal{X}}$ a finite VC-dimensions d:

$$\mathbb{P}\left(\sup_{h\in\mathcal{H}}\left|R^{0/1}(h)-R^{0/1}_{\mathcal{T}^m}(h)\right|\geq\varepsilon\right)\leq 4\left(\frac{2\,e\,m}{d}\right)^d e^{-\frac{m\,\varepsilon^2}{8}}=B_2(m,d,\varepsilon)$$

Corollary: If $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ is finite or $\mathcal{H} \subseteq \{-1, +1\}^{\mathcal{X}}$ has finite VC-dimension, then ERM algorithm is universally consistent in \mathcal{H} .

Bound on the number of training examples for finite hypothesis space

For finite hypothesis space we derived that

$$\mathbb{P}\Big(R(h_m) - R(h_{\mathcal{H}}) \ge \varepsilon\Big) \le \mathbb{P}\Big(\sup_{h \in \mathcal{H}} \left|R(h) - R_{\mathcal{T}^m}(h)\right| \ge \frac{\varepsilon}{2}\Big) \le 2|\mathcal{H}|e^{-\frac{m\varepsilon^2}{2(b-a)^2}}$$

Bound on the number of training examples for finite hypothesis space

For finite hypothesis space we derived that

$$\mathbb{P}\Big(R(h_m) - R(h_{\mathcal{H}}) \ge \varepsilon\Big) \le \mathbb{P}\Big(\sup_{h \in \mathcal{H}} \left|R(h) - R_{\mathcal{T}^m}(h)\right| \ge \frac{\varepsilon}{2}\Big) \le 2|\mathcal{H}|e^{-\frac{m\varepsilon^2}{2(b-a)^2}}$$

Corollary: Let $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ be a finite hypothesis space and $h_{\mathcal{H}} \in \operatorname{Argmin}_{h \in \mathcal{H}} R(h)$ the best strategy in \mathcal{H} . For very $\varepsilon, \delta \in (0, 1)$, let us define $m_{\mathcal{H}} \colon (0, 1)^2 \to \mathbb{N}$ such that

$$m_{\mathcal{H}}(\varepsilon,\delta) = \frac{2(\log 2|\mathcal{H}| - \log \delta)}{\varepsilon^2} (\ell_{max} - \ell_{min})^2 \,.$$

Let $h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h)$ be a strategy learned by ERM algorithm from $m \geq m_{\mathcal{H}}(\varepsilon, \delta)$ training examples \mathcal{T}^m generated i.i.d. from some p(x, y). Then, with probability $1 - \delta$ at least it holds that

$$R(h_m) - R(h_{\mathcal{H}}) \leq \varepsilon$$
.

