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Linear classifier minimizing classification error
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X is a set of observations and Y = {+1, —1} a set of hidden labels

¢: X — R" is fixed feature map embedding X to R"

find linear classification strategy h: X — Y

h(x;w,b) = sign({(w, p(x)) +b) = { ji :i EZ: Zggi 12 i 8

with minimal expected risk
RY(h) = E(z y)p (50/ 'y, h(w))) where  (%/1(y,y") = [y # /]
We are given a set of training examples
T ={(z"y) e (X xW)|i=1,...,m}

drawn from i.i.d. with the distribution p(x, y).
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ERM learning for linear classifiers

The Empirical Risk Minimization principle leads to solving

(w*,b*) €  Argmin RV (h(-;w, b))
(w,b)e(R™”xR)

where the empirical risk is
1 m
R (h( = = h( b
(h( — Z:: y' # h(z';w,b)]

Algorithmic issues (next lecture): in general, there is no known
algorithm solving the task (1) in time polynomial in m.

The uniform bound on the generalization error (this lecture):

(Sup |R0/1 Ro/l(h)‘ 28) < B(m,H,¢)
heH
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(1)
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Vapnik-Chervonenkis (VC) dimension @
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Definition: Let H C {—1,+1}F and {z',...,2™} € X™ be a set of m
input observations. The set {z!,..., 2™} is said to be shattered by # if for
all y € {+1,—1}™ there exists h € H such that h(z*) =4*, i € {1,...,m}.

Definition: Let H C {—1,+1}*. The Vapnik-Chervonenkis dimension of H
is the cardinality of the largest set of points from A which can be shattered

by H.
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VC dimension of class of two-class linear classifiers

Theorem: The VC-dimension of the hypothesis class of all two-class linear
classifiers operating in n-dimensional feature space

H ={h(z;w,b) =sign((w, p(z)) +0b) | (w,b) € (R" xR)} isn+1.

Example for n = 2-dimensional feature class
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ULLN for two class predictors and 0/1-loss @
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Theorem: Let H C {+1,—1}* be a hypothesis class with VC dimension
d<ooand T™={(z',y!),..., (2™, y™)} € (X x V)™ a training set draw
from i.i.d. rand vars with distribution p(x,y). Then, for any € > 0 it holds

d
2 m e
P(Sup Ro/l(h)—R%}L(h)| 26) §4( em) e s
heH d

Corollary: Let H C {+1,—1}* be a hypothesis class with VC dimension
d < oo. Then ULLN applies.
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Summary: uniform bounds on the generalization error
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We learned how to bound the generalization error uniformly for:
o H:{hl,...,h[(}:
2

2me
IP)( ™m ]’L — h > ) < 2 _(b_a)Q
max |Rym(h) — R(h)| 2 € | < 2[H]e

o H C {+1,—1}" a finite VC-dimensions d:

d
2 m &2
P(sup Ro/l(h)—Rg-/nll(h)‘ 25) §4< em) e s
heH d

In both cases the bound goes to zero, i.e., ULLN applies.

Does ERM algorithm h,, € Argmin Rym=(h) finds strategy with the

heH
minimal risk R(h)?
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Statistically consistent learning algorithm @
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hy € Argming o, R(h) the best strategy in H has the risk R(hy)
ho, = A(T,) strategy learned from 7., with has risk R(h,,)
R(hm) — R(hy) is the

The statistically consistent algorithm can make the estimation error
arbitrarily small if it has enough examples.

Definition: The algorithm A: U_; (X x V)™ — H is statistically
consistent in H C Y if for any p(x,y) it holds that

Ve>0: lim P(ﬁ(hm)—R(hH) Zg) =0

where h,, = A(T™) is learned by A for 7™ generated from p(x,y).
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Example: generalization error and estimation error

P( sup |R(h) — Rym(h)| > 8) < B(m,H,¢)
heH
highest genel?arlization error

P(ﬁ(hm);R(hHl > 5) < P(sgg }R(h) — RTm(h)‘ > %)

estimation error

_J/

J/

N

highest generalizaton error

H = {h(z) =sign(x — 0)|0 € R}, (y,y') = ly # ¥]
0.8 t---=--__ —— R(h)

R(hm)
RTm(hm)
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% N
Theorem: ULLN implies consistency of ERM @

For fixed 7™ and h,, € Argmin, o, R7m(h) we have: -
Rltn) = R(t0) = (Bltn) = Roen) ) + (Bro(hn) = Rl
< <R(hm) — RTm(hm)> + (RTm(h’H) — R(h’H)>
< 25up [R(1) ~ By (1)
hen
Therefore € < R(hy,) — R(hy) implies 5 < supj,cy ‘R(h) — Rym(h)| and

P(R(hm) ~ R(hy) > e> < ]P( sup ‘R(h) _ RTm(h)' > §>

so if converges the RHS to zero (ULLN) so does the LHS (estimation error).
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S d 0
Finite sample bound on the estimation error @
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Let H C Y be the hypothesis class with the best predictor

hy € Argmin R(h)
heH

We learn h,, from T ~ p(x,y) with the ERM algorithm

hu € Argmin Rym(h)
heH

Assume we have for H the uniform bound on the generalization error

IP( sup |Rym(h) — R(h)| > 8) < B(m,H,¢)
heH

Then, for any € > 0 the inequality
R(hm) < R(hy) +¢€

holds with the probability 1 — B(m,H,c /2) at least.
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Excess error = Estimation error 4+ Approximation errors
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The characters of the play:
R* = inf),cyx R(h) best attainable true risk

R(hy) best risk in H where hy, € Argmin, 4, R(h)

R(hy,) risk of h,, = A(T,) learned from T™

Excess error: the quantity we want to minimize

\(R(hm) - R*)/ - \(R(hm) _ R(hH)>J+ \(R(hﬂ) - R*)

J/

-~

€XCess error estimation error approximation error

Questions:
What causes individual errors ?

How do the errors depend on H and m?
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