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Linear classifier minimizing classification error

� X is a set of observations and Y = {+1,−1} a set of hidden labels

� φ : X → Rn is fixed feature map embedding X to Rn

� Task: find linear classification strategy h : X → Y

h(x;w, b) = sign(〈w,φ(x)〉+ b) =

{
+1 if 〈w,φ(x)〉+ b ≥ 0

−1 if 〈w,φ(x)〉+ b < 0

with minimal expected risk

R0/1(h) = E(x,y)∼p

(
`0/1(y, h(x))

)
where `0/1(y, y′) = [[y 6= y′]]

� We are given a set of training examples

T m = {(xi, yi) ∈ (X × Y) | i = 1, . . . ,m}

drawn from i.i.d. with the distribution p(x, y).
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ERM learning for linear classifiers

� The Empirical Risk Minimization principle leads to solving

(w∗, b∗) ∈ Argmin
(w,b)∈(Rn×R)

R
0/1
T m(h(·;w, b)) (1)

where the empirical risk is

R
0/1
T m(h(·;w, b)) =

1

m

m∑
i=1

[[yi 6= h(xi;w, b)]]

� Algorithmic issues (next lecture): in general, there is no known
algorithm solving the task (1) in time polynomial in m.

� The uniform bound on the generalization error (this lecture):

P
(
sup
h∈H

∣∣∣R0/1(h)−R0/1
T m(h)

∣∣∣ ≥ ε) ≤ B(m,H, ε)
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Vapnik-Chervonenkis (VC) dimension

Definition: Let H ⊆ {−1,+1}X and {x1, . . . , xm} ∈ Xm be a set of m
input observations. The set {x1, . . . , xm} is said to be shattered by H if for
all y ∈ {+1,−1}m there exists h ∈ H such that h(xi) = yi, i ∈ {1, . . . ,m}.

Definition: Let H ⊆ {−1,+1}X . The Vapnik-Chervonenkis dimension of H
is the cardinality of the largest set of points from X which can be shattered
by H.
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VC dimension of class of two-class linear classifiers

Theorem: The VC-dimension of the hypothesis class of all two-class linear
classifiers operating in n-dimensional feature space
H = {h(x;w, b) = sign(〈w,φ(x)〉+ b) | (w, b) ∈ (Rn × R)} is n+ 1.

Example for n = 2-dimensional feature class
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ULLN for two class predictors and 0/1-loss

Theorem: Let H ⊆ {+1,−1}X be a hypothesis class with VC dimension
d <∞ and T m = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m a training set draw
from i.i.d. rand vars with distribution p(x, y). Then, for any ε > 0 it holds

P
(
sup
h∈H

∣∣∣R0/1(h)−R0/1
T m(h)

∣∣∣ ≥ ε) ≤ 4

(
2 em

d

)d

e−
m ε2

8

Corollary: Let H ⊆ {+1,−1}X be a hypothesis class with VC dimension
d <∞. Then ULLN applies.
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Summary: uniform bounds on the generalization error

� We learned how to bound the generalization error uniformly for:

• Finite hypothesis class H = {h1, . . . , hK}:

P
(
max
h∈H
|RT m(h)−R(h)| ≥ ε

)
≤ 2|H|e−

2m ε2

(b−a)2

• Two-class classifiers H ⊆ {+1,−1}X a finite VC-dimensions d:

P
(
sup
h∈H

∣∣∣R0/1(h)−R0/1
T m(h)

∣∣∣ ≥ ε) ≤ 4

(
2 em

d

)d

e−
m ε2

8

In both cases the bound goes to zero, i.e., ULLN applies.

� Does ERM algorithm hm ∈ Argmin
h∈H

RT m(h) finds strategy with the

minimal risk R(h)?

http://cmp.felk.cvut.cz
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Statistically consistent learning algorithm

� hH ∈ Argminh∈HR(h) the best strategy in H has the risk R(hH)

� hm = A(Tm) strategy learned from Tm with has risk R(hm)

� R(hm)−R(hH) is the estimation error

� The statistically consistent algorithm can make the estimation error
arbitrarily small if it has enough examples.

Definition: The algorithm A : ∪∞m=1 (X × Y)m→ H is statistically
consistent in H ⊆ YX if for any p(x, y) it holds that

∀ ε > 0: lim
m→∞

P
(
R(hm)−R(hH) ≥ ε︸ ︷︷ ︸

high estimation error

)
= 0

where hm = A(T m) is learned by A for T m generated from p(x, y).

http://cmp.felk.cvut.cz
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H = {h(x) = sign(x− θ)|θ ∈ R}, `(y, y′) = [[y 6= y′]]

P
(
sup
h∈H

∣∣R(h)−RT m(h)
∣∣︸ ︷︷ ︸

highest generalization error

≥ ε
)
≤ B(m,H, ε)

P
(
R(hm)−R(hH)︸ ︷︷ ︸
estimation error

≥ ε
)
≤ P

(
sup
h∈H

∣∣R(h)−RT m(h)
∣∣︸ ︷︷ ︸

highest generalizaton error

≥ ε
2

)
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Example: generalization error and estimation error
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Theorem: ULLN implies consistency of ERM

For fixed T m and hm ∈ Argminh∈HRT m(h) we have:

R(hm)−R(hH) =
(
R(hm)−RT m(hm)

)
+

(
RT m(hm)−R(hH)

)
≤
(
R(hm)−RT m(hm)

)
+

(
RT m(hH)−R(hH)

)
≤ 2 sup

h∈H

∣∣∣∣R(h)−RT m(h)

∣∣∣∣
Therefore ε ≤ R(hm)−R(hH) implies ε

2 ≤ suph∈H

∣∣∣∣R(h)−RT m(h)

∣∣∣∣ and
P
(
R(hm)−R(hH) ≥ ε

)
≤ P

(
sup
h∈H

∣∣∣∣R(h)−RT m(h)

∣∣∣∣ ≥ ε

2

)
so if converges the RHS to zero (ULLN) so does the LHS (estimation error).

http://cmp.felk.cvut.cz


11/12
Finite sample bound on the estimation error

� Let H ⊆ YX be the hypothesis class with the best predictor

hH ∈ Argmin
h∈H

R(h)

� We learn hm from T m ∼ p(x, y) with the ERM algorithm

hm ∈ Argmin
h∈H

RT m(h)

� Assume we have for H the uniform bound on the generalization error

P
(
sup
h∈H

∣∣RT m(h)−R(h)
∣∣ ≥ ε) ≤ B(m,H, ε)

� Then, for any ε > 0 the inequality

R(hm) ≤ R(hH) + ε

holds with the probability 1−B(m,H, ε /2) at least.

http://cmp.felk.cvut.cz


The characters of the play:
� R∗ = infh∈YX R(h) best attainable true risk

� R(hH) best risk in H where hH ∈ Argminh∈HR(h)

� R(hm) risk of hm = A(Tm) learned from T m

Excess error: the quantity we want to minimize(
R(hm)−R∗

)
︸ ︷︷ ︸
excess error

=

(
R(hm)−R(hH)

)
︸ ︷︷ ︸
estimation error

+

(
R(hH)−R∗

)
︸ ︷︷ ︸

approximation error

Questions:
� What causes individual errors ?
� How do the errors depend on H and m?
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Excess error = Estimation error + Approximation errors
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