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Definition of the prediction problem

� X is a set of input observations/features

� Y is a set of hidden states/labels

� (x, y) ∈ X × Y samples randomly drawn from r.v. with p.d.f. p(x, y)

� h : X → Y is a prediction strategy/hypothesis

� ` : Y × Y → R is a loss function

� Task: find a strategy with the minimal true risk (expected loss)

R(h) =

∫ ∑
y∈Y

`(y, h(x)) p(x, y) dx = E(x,y)∼p

(
`(y, h(x))

)
� Optimal solution: Bayes predictor h∗ attaining the minimal risk

R(h∗) = inf
h∈YX

R(h)
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Example of a prediction problem

� The statistical model is known:

• X = R, Y = {+1,−1}, `(y, y′) =

{
0 if y = y′

1 if y 6= y′

• p(x, y) = p(y) 1√
2πσ

e
− 1

2σ2
(x−µy)2, y ∈ Y.
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Predictor evaluation and learning based on examples

� Assumption: The true risk R(h) = E(x,y)∼p(`(y, h(x))) is unknow due
to unknown p(x, y), however, we assume to have examples

(x1, y1), (x2, y2), . . . , (xn, yn)

drawn from i.i.d. r.v. distributed according to p(x, y).

� We will analyze two problems:

1. Evaluation: given h : X → Y, estimate its R(h) using test set

Sl = {(xi, yi) ∈ (X × Y) | i = 1, . . . , l} drawn i.i.d. from p(x, y)

2. Learning: find h : X → Y with small R(h) using training set

T m = {(xi, yi) ∈ (X ×Y) | i = 1, . . . ,m} drawn i.i.d. from p(x, y)
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� Given a predictor h : X → Y and a test set Sl draw i.i.d. from p(x, y),
compute the empirical risk

RSl(h) =
1

l

(
`(y1, h(x1)) + · · ·+ `(yl, h(xl)

)
=

1

l

l∑
i=1

`(yi, h(xi))

and use it as an estimate of the true risk R(h) = E(x,y)∼p(`(y, h(x))).

� RSl(h) is a random number with an unknown distribution.

� We will construct a confidence interval such that

R(h) ∈ (RSl(h) − ε,RSl(h) + ε) with probability (confidence) γ ∈ (0, 1)

where ε is a deviation.
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Predictor evaluation via empirical risk
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Law of large numbers

� Sample mean (arithmetic average) of the results of random trials gets
closer to the expected value as more trials are performed.

� Example: The expected value of a single roll of a fair die is

µ = Ez∼p(z) =
6∑
z=1

z p(z) =
1 + 2 + 3 + 4 + 5 + 6

6
= 3.5
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Rolling a die: 100 experiments
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empirical
2exp( 2l 2/(b a)2)

sample size l = 50, deviation ε = 0.5

#
(
|µ̂− µ| ≥ ε

)
#experiments

=
5

100
= 0.05 → P

(
|µ̂− µ| ≥ ε

)
≤ 2e

− 2l ε2

(b−a)2

a = 1, b = 6

Hoeffding inequality
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Counting frequency of bad estimates
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Hoeffding inequality

Theorem: Let {z1, . . . , zl} be a sample from independent r.v. from [a, b]

with expected value µ. Let µ̂ = 1
l

∑l
i=1 z

i. Then for any ε > 0 it holds that

P
(
|µ̂− µ| ≥ ε

)
≤ 2e

− 2l ε2

(b−a)2

Properties:

� Conservative: the bound may not be tight.

� General: the bound holds for any distribution.

� Cheap: The bound is simple and easy to compute.
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Confidence intervals
(l, γ) → ε

� Let µ̂ = 1
l

∑l
i=1 z

i be the sample mean computed from
{z1, . . . , zl} ∈ [a, b]l sampled from r.v. with expected value µ.

� Find ε such that µ ∈ (µ̂− ε, µ̂+ ε) with probability at least γ.

Using the Hoeffding inequality we can write

P
(
|µ̂− µ| < ε

)
= 1− P

(
|µ̂− µ| ≥ ε

)
≥ 1− 2e

− 2 l ε2

(b−a)2 = γ

and solving the last equation for ε yields

ε = |b− a|
√

log(2)− log(1− γ)
2 l
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Confidence intervals
(ε, γ) → l

� Let µ̂ = 1
l

∑l
i=1 z

i be the sample mean computed from
{z1, . . . , zl} ∈ [a, b]l sampled from r.v. with expected value µ.

� Given a fixed ε > 0 and γ ∈ (0, 1), what is the minimal number of
examples l such that µ ∈ (µ̂− ε, µ̂+ ε) with probability γ at least ?

Starting from

P
(
|µ̂− µ| < ε

)
= 1− P

(
|µ̂− µ| ≥ ε

)
≥ 1− 2e

− 2 l ε2

(b−a)2 = γ

and solving for l yields

l =
log(2)− log(1− γ)

2 ε2
(b− a)2
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Back to the problem:
Estimation of the true risk by using confidence intervals

� Given h : X → Y estimate the true risk R(h) = E(x,y)∼p(`(y, h(x))) by
the empirical risk RSl(h) = 1

l

∑l
i=1 `(y

i, h(xi)) using the test set Sl.

� Confidence interval:

R(h) ∈
(
RSl(h)− ε,RSl(h) + ε

)
with probability γ ∈ (0, 1)

� For fixed l and γ ∈ (0, 1) compute interval width

ε = (`max − `min)

√
log(2)− log(1− γ)

2 l
.

� For fixed ε and γ ∈ (0, 1) compute number of test examples

l =
log(2)− log(1− γ)

2 ε2
(`max − `min)

2
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Learning: the definition

� The goal: Find a strategy h : X → Y minimizing R(h) using the
training set of examples

T m = {(xi, yi) ∈ (X × Y) | i = 1, . . . ,m}

drawn from i.i.d. rv. with unknown p(x, y).

� Hypothesis class (space):

H ⊆ YX = {h : X → Y}

� Learning algorithm: a function

A : ∪∞m=1 (X × Y)m→ H

which returns a strategy hm = A(T m) for a training set T m
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� The ERM based algorithm returns hm such that

hm ∈ Argmin
h∈H

RT m(h) (1)

� Depending on the choince of H and ` and algorithm solving (1) we get
individual instances e.g. Support Vector Machines, Linear Regression,
Logistic Regression, Neural Networks learned by back-propagation,
AdaBoost, Gradient Boosted Trees, ...
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Learning: Empirical Risk Minimization approach

� The expected risk R(h), i.e. the true but unknown objective, is replaced
by the empirical risk computed from the training examples T m,

RT m(h) =
1

m

m∑
i=1

`(yi, h(xi))
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Example of ERM failure

� Let X = [a, b] ⊂ R, Y = {+1,−1}, `(y, y′) = [[y 6= y′]], p(x | y = +1)

and p(x | y = −1) be uniform distributions on X and p(y = +1) = 0.8.

� The optimal strategy is h(x) = +1 with the Bayes risk R∗ = 0.2.

� Consider learning algorithm which for a given training set
T m = {(x1, y1), . . . , (xm, ym)} returns memorizing strategy

hm(x) =

{
yj if x = xj for some j ∈ {1, . . . ,m}
−1 otherwise

� The empirical risk is RT m(hm) = 0 with probability 1 for any m.

� The expected risk is R(hm) = 0.8 for any m.
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