Statistical Machine Learning (BE4M33SSU)
 Lecture 2: Predictor evaluation and learning via using empirical risk

Czech Technical University in Prague
V. Franc

BE4M33SSU - Statistical Machine Learning, Winter 2022

Definition of the prediction problem

- \mathcal{X} is a set of input observations/features
- \mathcal{Y} is a set of hidden states/labels
- $(x, y) \in \mathcal{X} \times \mathcal{Y}$ samples randomly drawn from r.v. with p.d.f. $p(x, y)$
- $h: \mathcal{X} \rightarrow \mathcal{Y}$ is a prediction strategy/hypothesis
$\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ is a loss function
- Task: find a strategy with the minimal true risk (expected loss)

$$
R(h)=\int \sum_{y \in \mathcal{Y}} \ell(y, h(x)) p(x, y) \mathrm{d} x=\mathbb{E}_{(x, y) \sim p}(\ell(y, h(x)))
$$

- Optimal solution: Bayes predictor h^{*} attaining the minimal risk

$$
R\left(h^{*}\right)=\inf _{h \in \mathcal{Y}^{\mathcal{X}}} R(h)
$$

Example of a prediction problem

The statistical model is known:

- $\mathcal{X}=\mathbb{R}, \quad \mathcal{Y}=\{+1,-1\}, \quad \ell\left(y, y^{\prime}\right)=\left\{\begin{array}{lll}0 & \text { if } y=y^{\prime} \\ 1 & \text { if } & y \neq y^{\prime}\end{array}\right.$
- $p(x, y)=p(y) \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}\left(x-\mu_{y}\right)^{2}}, \quad y \in \mathcal{Y}$.

Example of a prediction problem

The statistical model is known:

- $\mathcal{X}=\mathbb{R}, \quad \mathcal{Y}=\{+1,-1\}, \quad \ell\left(y, y^{\prime}\right)=\left\{\begin{array}{lll}0 & \text { if } & y=y^{\prime} \\ 1 & \text { if } & y \neq y^{\prime}\end{array}\right.$
- $p(x, y)=p(y) \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}\left(x-\mu_{y}\right)^{2}}, \quad y \in \mathcal{Y}$.

The optimal strategy (assuming $\mu_{-}<\mu_{+}$):

$$
h(x)=\operatorname{argmax}_{y \in \mathcal{Y}} p(y \mid x)=\operatorname{sign}(x-\theta)
$$

Example of a prediction problem

The statistical model is known:

- $\mathcal{X}=\mathbb{R}, \quad \mathcal{Y}=\{+1,-1\}, \quad \ell\left(y, y^{\prime}\right)=\left\{\begin{array}{lll}0 & \text { if } & y=y^{\prime} \\ 1 & \text { if } & y \neq y^{\prime}\end{array}\right.$
- $p(x, y)=p(y) \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}\left(x-\mu_{y}\right)^{2}}, \quad y \in \mathcal{Y}$.

The optimal strategy (assuming $\mu_{-}<\mu_{+}$):

$$
h(x)=\operatorname{argmax}_{y \in \mathcal{Y}} p(y \mid x)=\operatorname{sign}(x-\theta)
$$

The value of the true risk:

$$
R(h)=\int_{-\infty}^{\theta} p(x,+1) \mathrm{d} x+\int_{\theta}^{\infty} p(x,-1) \mathrm{d} x
$$

Example of a prediction problem

The statistical model is known:

- $\mathcal{X}=\mathbb{R}, \quad \mathcal{Y}=\{+1,-1\}, \quad \ell\left(y, y^{\prime}\right)=\left\{\begin{array}{lll}0 & \text { if } & y=y^{\prime} \\ 1 & \text { if } & y \neq y^{\prime}\end{array}\right.$
- $p(x, y)=p(y) \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}\left(x-\mu_{y}\right)^{2}}, \quad y \in \mathcal{Y}$.

Predictor evaluation and learning based on examples

- Assumption: The true risk $R(h)=\mathbb{E}_{(x, y) \sim p}(\ell(y, h(x)))$ is unknow due to unknown $p(x, y)$, however, we assume to have examples

$$
\left(x^{1}, y^{1}\right),\left(x^{2}, y^{2}\right), \ldots,\left(x^{n}, y^{n}\right)
$$

drawn from i.i.d. r.v. distributed according to $p(x, y)$.

Predictor evaluation and learning based on examples

- Assumption: The true risk $R(h)=\mathbb{E}_{(x, y) \sim p}(\ell(y, h(x)))$ is unknow due to unknown $p(x, y)$, however, we assume to have examples

$$
\left(x^{1}, y^{1}\right),\left(x^{2}, y^{2}\right), \ldots,\left(x^{n}, y^{n}\right)
$$

drawn from i.i.d. r.v. distributed according to $p(x, y)$.

- We will analyze two problems:

1. Evaluation: given $h: \mathcal{X} \rightarrow \mathcal{Y}$, estimate its $R(h)$ using test set

$$
\mathcal{S}^{l}=\left\{\left(x^{i}, y^{i}\right) \in(\mathcal{X} \times \mathcal{Y}) \mid i=1, \ldots, l\right\} \quad \text { drawn i.i.d. from } \quad p(x, y)
$$

2. Learning: find $h: \mathcal{X} \rightarrow \mathcal{Y}$ with small $R(h)$ using training set

$$
\mathcal{T}^{m}=\left\{\left(x^{i}, y^{i}\right) \in(\mathcal{X} \times \mathcal{Y}) \mid i=1, \ldots, m\right\} \quad \text { drawn i.i.d. from } \quad p(x, y)
$$

Predictor evaluation via empirical risk

Given a predictor $h: \mathcal{X} \rightarrow \mathcal{Y}$ and a test set \mathcal{S}^{l} draw i.i.d. from $p(x, y)$, compute the empirical risk

$$
R_{\mathcal{S}^{l}}(h)=\frac{1}{l}\left(\ell\left(y^{1}, h\left(x^{1}\right)\right)+\cdots+\ell\left(y^{l}, h\left(x^{l}\right)\right)=\frac{1}{l} \sum_{i=1}^{l} \ell\left(y^{i}, h\left(x^{i}\right)\right)\right.
$$

and use it as an estimate of the true risk $R(h)=\mathbb{E}_{(x, y) \sim p}(\ell(y, h(x)))$.

Predictor evaluation via empirical risk

Given a predictor $h: \mathcal{X} \rightarrow \mathcal{Y}$ and a test set \mathcal{S}^{l} draw i.i.d. from $p(x, y)$, compute the empirical risk

$$
R_{\mathcal{S}^{l}}(h)=\frac{1}{l}\left(\ell\left(y^{1}, h\left(x^{1}\right)\right)+\cdots+\ell\left(y^{l}, h\left(x^{l}\right)\right)=\frac{1}{l} \sum_{i=1}^{l} \ell\left(y^{i}, h\left(x^{i}\right)\right)\right.
$$

and use it as an estimate of the true risk $R(h)=\mathbb{E}_{(x, y) \sim p}(\ell(y, h(x)))$.

Predictor evaluation via empirical risk

Given a predictor $h: \mathcal{X} \rightarrow \mathcal{Y}$ and a test set \mathcal{S}^{l} draw i.i.d. from $p(x, y)$, compute the empirical risk

$$
R_{\mathcal{S}^{l}}(h)=\frac{1}{l}\left(\ell\left(y^{1}, h\left(x^{1}\right)\right)+\cdots+\ell\left(y^{l}, h\left(x^{l}\right)\right)=\frac{1}{l} \sum_{i=1}^{l} \ell\left(y^{i}, h\left(x^{i}\right)\right)\right.
$$

and use it as an estimate of the true risk $R(h)=\mathbb{E}_{(x, y) \sim p}(\ell(y, h(x)))$.

Predictor evaluation via empirical risk

Given a predictor $h: \mathcal{X} \rightarrow \mathcal{Y}$ and a test set \mathcal{S}^{l} draw i.i.d. from $p(x, y)$, compute the empirical risk

$$
R_{\mathcal{S}^{l}}(h)=\frac{1}{l}\left(\ell\left(y^{1}, h\left(x^{1}\right)\right)+\cdots+\ell\left(y^{l}, h\left(x^{l}\right)\right)=\frac{1}{l} \sum_{i=1}^{l} \ell\left(y^{i}, h\left(x^{i}\right)\right)\right.
$$

and use it as an estimate of the true risk $R(h)=\mathbb{E}_{(x, y) \sim p}(\ell(y, h(x)))$.

Predictor evaluation via empirical risk

Given a predictor $h: \mathcal{X} \rightarrow \mathcal{Y}$ and a test set \mathcal{S}^{l} draw i.i.d. from $p(x, y)$, compute the empirical risk

$$
R_{\mathcal{S}^{l}}(h)=\frac{1}{l}\left(\ell\left(y^{1}, h\left(x^{1}\right)\right)+\cdots+\ell\left(y^{l}, h\left(x^{l}\right)\right)=\frac{1}{l} \sum_{i=1}^{l} \ell\left(y^{i}, h\left(x^{i}\right)\right)\right.
$$

and use it as an estimate of the true risk $R(h)=\mathbb{E}_{(x, y) \sim p}(\ell(y, h(x)))$.

Predictor evaluation via empirical risk

Given a predictor $h: \mathcal{X} \rightarrow \mathcal{Y}$ and a test set \mathcal{S}^{l} draw i.i.d. from $p(x, y)$, compute the empirical risk

$$
R_{\mathcal{S}^{l}}(h)=\frac{1}{l}\left(\ell\left(y^{1}, h\left(x^{1}\right)\right)+\cdots+\ell\left(y^{l}, h\left(x^{l}\right)\right)=\frac{1}{l} \sum_{i=1}^{l} \ell\left(y^{i}, h\left(x^{i}\right)\right)\right.
$$

and use it as an estimate of the true risk $R(h)=\mathbb{E}_{(x, y) \sim p}(\ell(y, h(x)))$.

- $R_{\mathcal{S}^{l}}(h)$ is a random number with an unknown distribution.
- We will construct a confidence interval such that
$R(h) \in\left(R_{\mathcal{S}^{l}(h)}-\varepsilon, R_{\mathcal{S}^{l}(h)}+\varepsilon\right)$ with probability (confidence) $\gamma \in(0,1)$
where ε is a deviation.

Law of large numbers

- Sample mean (arithmetic average) of the results of random trials gets closer to the expected value as more trials are performed.

Law of large numbers

- Sample mean (arithmetic average) of the results of random trials gets closer to the expected value as more trials are performed.
- Example: The expected value of a single roll of a fair die is

$$
\begin{aligned}
& \mu=\mathbb{E}_{z \sim p}(z)=\sum_{z=1}^{6} z p(z)=\frac{1+2+3+4+5+6}{6}=3.5 \\
& \hat{\mu}=\frac{1}{l} \sum_{i=1}^{l} z^{i}
\end{aligned}
$$

Law of large numbers

- Sample mean (arithmetic average) of the results of random trials gets closer to the expected value as more trials are performed.
- Example: The expected value of a single roll of a fair die is

$$
\mu=\mathbb{E}_{z \sim p}(z)=\sum_{z=1}^{6} z p(z)=\frac{1+2+3+4+5+6}{6}=3.5
$$

$$
\hat{\mu}=\frac{1}{l} \sum_{i=1}^{l} z^{i}
$$

Law of large numbers

- Sample mean (arithmetic average) of the results of random trials gets closer to the expected value as more trials are performed.
- Example: The expected value of a single roll of a fair die is

$$
\mu=\mathbb{E}_{z \sim p}(z)=\sum_{z=1}^{6} z p(z)=\frac{1+2+3+4+5+6}{6}=3.5
$$

$$
\hat{\mu}=\frac{1}{l} \sum_{i=1}^{l} z^{i}
$$

Law of large numbers

- Sample mean (arithmetic average) of the results of random trials gets closer to the expected value as more trials are performed.
- Example: The expected value of a single roll of a fair die is

$$
\mu=\mathbb{E}_{z \sim p}(z)=\sum_{z=1}^{6} z p(z)=\frac{1+2+3+4+5+6}{6}=3.5
$$

$$
\hat{\mu}=\frac{1}{l} \sum_{i=1}^{l} z^{i}
$$

Law of large numbers

- Sample mean (arithmetic average) of the results of random trials gets closer to the expected value as more trials are performed.
- Example: The expected value of a single roll of a fair die is

$$
\mu=\mathbb{E}_{z \sim p}(z)=\sum_{z=1}^{6} z p(z)=\frac{1+2+3+4+5+6}{6}=3.5
$$

$$
\hat{\mu}=\frac{1}{l} \sum_{i=1}^{l} z^{i}
$$

Counting frequency of bad estimates

Counting frequency of bad estimates

sample size $l=50$, deviation $\varepsilon=0.5$

Counting frequency of bad estimates

sample size $l=50$, deviation $\varepsilon=0.5$

$$
\frac{\#(|\hat{\mu}-\mu| \geq \varepsilon)}{\# \text { experiments }}=\frac{1}{5}=0.2
$$

Counting frequency of bad estimates

sample size $l=50$, deviation $\varepsilon=0.5$

$$
\frac{\#(|\hat{\mu}-\mu| \geq \varepsilon)}{\# \text { experiments }}=\frac{5}{100}=0.05
$$

Counting frequency of bad estimates

sample size $l=50$, deviation $\varepsilon=0.5$

$$
\frac{\#(|\hat{\mu}-\mu| \geq \varepsilon)}{\# \text { experiments }}=\frac{5}{100}=0.05 \quad \rightarrow \quad \mathbb{P}(|\hat{\mu}-\mu| \geq \varepsilon)
$$

Counting frequency of bad estimates

sample size $l=50$, deviation $\varepsilon=0.5$
Hoeffding inequality

$$
\begin{array}{r}
\frac{\#(|\hat{\mu}-\mu| \geq \varepsilon)}{\# \text { experiments }}=\frac{5}{100}=0.05 \rightarrow \mathbb{P}(|\hat{\mu}-\mu| \geq \varepsilon) \leq 2 e^{-\frac{2 l \varepsilon^{2}}{(b-a)^{2}}} \\
a=1, b=6
\end{array}
$$

Counting frequency of bad estimates

sample size $l=50$, deviation $\varepsilon=0.5$
Hoeffding inequality

$$
\begin{array}{r}
\frac{\#(|\hat{\mu}-\mu| \geq \varepsilon)}{\# \text { experiments }}=\frac{5}{100}=0.05 \rightarrow \mathbb{P}(|\hat{\mu}-\mu| \geq \varepsilon) \leq 2 e^{-\frac{2 l \varepsilon^{2}}{(b-a)^{2}}} \\
a=1, b=6
\end{array}
$$

Hoeffding inequality

Theorem: Let $\left\{z^{1}, \ldots, z^{l}\right\}$ be a sample from independent r.v. from $[a, b]$ with expected value μ. Let $\hat{\mu}=\frac{1}{l} \sum_{i=1}^{l} z^{i}$. Then for any $\varepsilon>0$ it holds that

$$
\mathbb{P}(|\hat{\mu}-\mu| \geq \varepsilon) \leq 2 e^{-\frac{2 l \varepsilon^{2}}{(b-a)^{2}}}
$$

Hoeffding inequality

Theorem: Let $\left\{z^{1}, \ldots, z^{l}\right\}$ be a sample from independent r.v. from $[a, b]$ with expected value μ. Let $\hat{\mu}=\frac{1}{l} \sum_{i=1}^{l} z^{i}$. Then for any $\varepsilon>0$ it holds that

$$
\mathbb{P}(|\hat{\mu}-\mu| \geq \varepsilon) \leq 2 e^{-\frac{2 l \varepsilon^{2}}{(b-a)^{2}}}
$$

Properties:

- Conservative: the bound may not be tight.
- General: the bound holds for any distribution.
- Cheap: The bound is simple and easy to compute.

Confidence intervals
$(l, \gamma) \rightarrow \varepsilon$

- Let $\hat{\mu}=\frac{1}{l} \sum_{i=1}^{l} z^{i}$ be the sample mean computed from $\left\{z^{1}, \ldots, z^{l}\right\} \in[a, b]^{l}$ sampled from r.v. with expected value μ.

Find ε such that $\mu \in(\hat{\mu}-\varepsilon, \hat{\mu}+\varepsilon)$ with probability at least γ.

Let $\hat{\mu}=\frac{1}{l} \sum_{i=1}^{l} z^{i}$ be the sample mean computed from $\left\{z^{1}, \ldots, z^{l}\right\} \in[a, b]^{l}$ sampled from r.v. with expected value μ.

Find ε such that $\mu \in(\hat{\mu}-\varepsilon, \hat{\mu}+\varepsilon)$ with probability at least γ.
Using the Hoeffding inequality we can write

$$
\mathbb{P}(|\hat{\mu}-\mu|<\varepsilon)=1-\mathbb{P}(|\hat{\mu}-\mu| \geq \varepsilon) \geq 1-2 e^{-\frac{2 l \varepsilon^{2}}{(b-a)^{2}}}=\gamma
$$

and solving the last equation for ε yields

$$
\varepsilon=|b-a| \sqrt{\frac{\log (2)-\log (1-\gamma)}{2 l}}
$$

Confidence intervals

$$
(\varepsilon, \gamma) \rightarrow l
$$

Let $\hat{\mu}=\frac{1}{l} \sum_{i=1}^{l} z^{i}$ be the sample mean computed from $\left\{z^{1}, \ldots, z^{l}\right\} \in[a, b]^{l}$ sampled from r.v. with expected value μ.

- Given a fixed $\varepsilon>0$ and $\gamma \in(0,1)$, what is the minimal number of examples l such that $\mu \in(\hat{\mu}-\varepsilon, \hat{\mu}+\varepsilon)$ with probability γ at least ?

Confidence intervals

$$
(\varepsilon, \gamma) \rightarrow l
$$

Let $\hat{\mu}=\frac{1}{l} \sum_{i=1}^{l} z^{i}$ be the sample mean computed from $\left\{z^{1}, \ldots, z^{l}\right\} \in[a, b]^{l}$ sampled from r.v. with expected value μ.

- Given a fixed $\varepsilon>0$ and $\gamma \in(0,1)$, what is the minimal number of examples l such that $\mu \in(\hat{\mu}-\varepsilon, \hat{\mu}+\varepsilon)$ with probability γ at least ?

Starting from

$$
\mathbb{P}(|\hat{\mu}-\mu|<\varepsilon)=1-\mathbb{P}(|\hat{\mu}-\mu| \geq \varepsilon) \geq 1-2 e^{-\frac{2 l \varepsilon^{2}}{(b-a)^{2}}}=\gamma
$$

and solving for l yields

$$
l=\frac{\log (2)-\log (1-\gamma)}{2 \varepsilon^{2}}(b-a)^{2}
$$

Back to the problem:

Estimation of the true risk by using confidence intervals

- Given $h: \mathcal{X} \rightarrow \mathcal{Y}$ estimate the true risk $R(h)=\mathbb{E}_{(x, y) \sim p}(\ell(y, h(x)))$ by the empirical risk $R_{\mathcal{S}^{l}}(h)=\frac{1}{l} \sum_{i=1}^{l} \ell\left(y^{i}, h\left(x^{i}\right)\right)$ using the test set \mathcal{S}^{l}.
- Confidence interval:

$$
R(h) \in\left(R_{\mathcal{S}^{l}}(h)-\varepsilon, R_{\mathcal{S}^{l}}(h)+\varepsilon\right) \quad \text { with probability } \quad \gamma \in(0,1)
$$

Back to the problem:

Estimation of the true risk by using confidence intervals

- Given $h: \mathcal{X} \rightarrow \mathcal{Y}$ estimate the true risk $R(h)=\mathbb{E}_{(x, y) \sim p}(\ell(y, h(x)))$ by the empirical risk $R_{\mathcal{S}^{l}}(h)=\frac{1}{l} \sum_{i=1}^{l} \ell\left(y^{i}, h\left(x^{i}\right)\right)$ using the test set \mathcal{S}^{l}.
- Confidence interval:

$$
R(h) \in\left(R_{\mathcal{S}^{l}}(h)-\varepsilon, R_{\mathcal{S}^{l}}(h)+\varepsilon\right) \quad \text { with probability } \quad \gamma \in(0,1)
$$

- For fixed l and $\gamma \in(0,1)$ compute interval width

$$
\varepsilon=\left(\ell_{\max }-\ell_{\min }\right) \sqrt{\frac{\log (2)-\log (1-\gamma)}{2 l}}
$$

- For fixed ε and $\gamma \in(0,1)$ compute number of test examples

$$
l=\frac{\log (2)-\log (1-\gamma)}{2 \varepsilon^{2}}\left(\ell_{\max }-\ell_{\min }\right)^{2}
$$

Learning: the definition

- The goal: Find a strategy $h: \mathcal{X} \rightarrow \mathcal{Y}$ minimizing $R(h)$ using the training set of examples

$$
\mathcal{T}^{m}=\left\{\left(x^{i}, y^{i}\right) \in(\mathcal{X} \times \mathcal{Y}) \mid i=1, \ldots, m\right\}
$$

drawn from i.i.d. rv. with unknown $p(x, y)$.

- Hypothesis class (space):

$$
\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}=\{h: \mathcal{X} \rightarrow \mathcal{Y}\}
$$

- Learning algorithm:
a function

$$
A: \cup_{m=1}^{\infty}(\mathcal{X} \times \mathcal{Y})^{m} \rightarrow \mathcal{H}
$$

which returns a strategy $h_{m}=A\left(\mathcal{T}^{m}\right)$ for a training set \mathcal{T}^{m}

Learning: Empirical Risk Minimization approach

- The expected risk $R(h)$, i.e. the true but unknown objective, is replaced by the empirical risk computed from the training examples \mathcal{T}^{m},

$$
R_{\mathcal{T}^{m}}(h)=\frac{1}{m} \sum_{i=1}^{m} \ell\left(y^{i}, h\left(x^{i}\right)\right)
$$

The ERM based algorithm returns h_{m} such that

$$
\begin{equation*}
h_{m} \in \underset{h \in \mathcal{H}}{\operatorname{Argmin}} R_{\mathcal{T}^{m}}(h) \tag{1}
\end{equation*}
$$

Learning: Empirical Risk Minimization approach

The expected risk $R(h)$, i.e. the true but unknown objective, is replaced by the empirical risk computed from the training examples \mathcal{T}^{m},

$$
R_{\mathcal{T}^{m}}(h)=\frac{1}{m} \sum_{i=1}^{m} \ell\left(y^{i}, h\left(x^{i}\right)\right)
$$

$$
\mathcal{H}=\{h(x)=\operatorname{sign}(x-\theta) \mid \theta \in \mathbb{R}\}, \quad \ell\left(y, y^{\prime}\right)=\left[y \neq y^{\prime}\right]
$$

Learning: Empirical Risk Minimization approach

The expected risk $R(h)$, i.e. the true but unknown objective, is replaced by the empirical risk computed from the training examples \mathcal{T}^{m},

$$
R_{\mathcal{T}^{m}}(h)=\frac{1}{m} \sum_{i=1}^{m} \ell\left(y^{i}, h\left(x^{i}\right)\right)
$$

$$
\mathcal{H}=\{h(x)=\operatorname{sign}(x-\theta) \mid \theta \in \mathbb{R}\}, \quad \ell\left(y, y^{\prime}\right)=\left[y \neq y^{\prime}\right]
$$

Learning: Empirical Risk Minimization approach

- The expected risk $R(h)$, i.e. the true but unknown objective, is replaced by the empirical risk computed from the training examples \mathcal{T}^{m},

$$
R_{\mathcal{T}^{m}}(h)=\frac{1}{m} \sum_{i=1}^{m} \ell\left(y^{i}, h\left(x^{i}\right)\right)
$$

The ERM based algorithm returns h_{m} such that

$$
\begin{equation*}
h_{m} \in \underset{h \in \mathcal{H}}{\operatorname{Argmin}} R_{\mathcal{T}^{m}}(h) \tag{1}
\end{equation*}
$$

Depending on the choince of \mathcal{H} and ℓ and algorithm solving (1) we get individual instances e.g. Support Vector Machines, Linear Regression, Logistic Regression, Neural Networks learned by back-propagation, AdaBoost, Gradient Boosted Trees, ...

Example of ERM failure

Let $\mathcal{X}=[a, b] \subset \mathbb{R}, \mathcal{Y}=\{+1,-1\}, \ell\left(y, y^{\prime}\right)=\left[y \neq y^{\prime}\right], p(x \mid y=+1)$ and $p(x \mid y=-1)$ be uniform distributions on \mathcal{X} and $p(y=+1)=0.8$.

Example of ERM failure

- Let $\mathcal{X}=[a, b] \subset \mathbb{R}, \mathcal{Y}=\{+1,-1\}, \ell\left(y, y^{\prime}\right)=\left[y \neq y^{\prime}\right], p(x \mid y=+1)$ and $p(x \mid y=-1)$ be uniform distributions on \mathcal{X} and $p(y=+1)=0.8$.

The optimal strategy is $h(x)=+1$ with the Bayes risk $R^{*}=0.2$.

Example of ERM failure

Let $\mathcal{X}=[a, b] \subset \mathbb{R}, \mathcal{Y}=\{+1,-1\}, \ell\left(y, y^{\prime}\right)=\left[y \neq y^{\prime}\right], p(x \mid y=+1)$ and $p(x \mid y=-1)$ be uniform distributions on \mathcal{X} and $p(y=+1)=0.8$.

The optimal strategy is $h(x)=+1$ with the Bayes risk $R^{*}=0.2$.

- Consider learning algorithm which for a given training set $\mathcal{T}^{m}=\left\{\left(x^{1}, y^{1}\right), \ldots,\left(x^{m}, y^{m}\right)\right\}$ returns memorizing strategy

$$
h_{m}(x)=\left\{\begin{aligned}
y^{j} & \text { if } x=x^{j} \text { for some } j \in\{1, \ldots, m\} \\
-1 & \text { otherwise }
\end{aligned}\right.
$$

Example of ERM failure

Let $\mathcal{X}=[a, b] \subset \mathbb{R}, \mathcal{Y}=\{+1,-1\}, \ell\left(y, y^{\prime}\right)=\left[y \neq y^{\prime}\right], p(x \mid y=+1)$ and $p(x \mid y=-1)$ be uniform distributions on \mathcal{X} and $p(y=+1)=0.8$.

The optimal strategy is $h(x)=+1$ with the Bayes risk $R^{*}=0.2$.

- Consider learning algorithm which for a given training set $\mathcal{T}^{m}=\left\{\left(x^{1}, y^{1}\right), \ldots,\left(x^{m}, y^{m}\right)\right\}$ returns memorizing strategy

$$
h_{m}(x)=\left\{\begin{aligned}
y^{j} & \text { if } x=x^{j} \text { for some } j \in\{1, \ldots, m\} \\
-1 & \text { otherwise }
\end{aligned}\right.
$$

- The empirical risk is $R_{\mathcal{T}^{m}}\left(h_{m}\right)=0$ with probability 1 for any m.
- The expected risk is $R\left(h_{m}\right)=0.8$ for any m.

$z^{1}=3 \quad z^{2}=1 \quad z^{3}=5$

- - 0

$$
z^{l}=2
$$

$z^{1}=3 \quad z^{2}=1 \quad z^{3}=5$

- - 0

$$
z^{l}=2
$$

$z^{1}=3 \quad z^{2}=1 \quad z^{3}=5$

- - 0

$$
z^{l}=2
$$

$z^{1}=3 \quad z^{2}=1 \quad z^{3}=5$

- - 0

$$
z^{l}=2
$$

$z^{1}=3 \quad z^{2}=1 \quad z^{3}=5$

- - 0

$$
z^{l}=2
$$

Rolling a die: 5 experiments

Rolling a die: 5 experiments

