Statistical Machine Learning (BE4M33SSU) Lecture 9: EM algorithm; Bayesian learning

Czech Technical University in Prague

Expectation Maximisation algorithm

Bayesian inference

Variational Bayesian inference

Unsupervised generative learning:

- The joint p.d. $p_{\theta}(x,y)$, $\theta \in \Theta$ is known up to the parameter $\theta \in \Theta$,
- given training data $\mathcal{T}^m = \{x^j \in \mathcal{X} \mid i = 1, 2, \dots, m\}$ i.i.d. generated from p_{θ^*} .

How shall we implement the MLE for θ without knowing class labels y?

$$e_{ML}(\mathcal{T}^m) = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \frac{1}{m} \sum_{x \in \mathcal{T}^m} \log p_{\theta}(x) = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \mathbb{E}_{x \sim \mathcal{T}^m} \Big[\log \sum_{y \in \mathcal{Y}} p_{\theta}(x, y) \Big]$$

- If θ is a single parameter or a vector of homogeneous parameters \Rightarrow maximise the log-likelihood directly by gradient ascent (provided it is differentiable in θ).
- If θ is a collection of heterogeneous parameters \Rightarrow apply the **Expectation Maximisation Algorithm** (Schlesinger, 1968, Sundberg, 1974, Dempster, Laird, and Rubin, 1977)

EM algorithm (intuitive idea): Iterate the following two steps

- Given the current parameter estimate $\theta^{(t)}$, compute $\alpha_x(y) \coloneqq p_{\theta^{(t)}}(y | x)$ for each $x \in \mathcal{T}^m$ and $y \in \mathcal{Y}$.
- Use this information as "soft" labels and solve the MLE task

$$\theta^{(t+1)} \in \operatorname*{arg\,max}_{\theta} \sum_{x \in \mathcal{T}^m} \sum_{y \in \mathcal{Y}} \alpha_x(y) \log p_{\theta}(x, y)$$

Can this really work? Yes it can! Consider the equation $\log p_{\theta}(x) = \log p_{\theta}(x, y) - \log p_{\theta}(y | x)$ and average it with $\alpha_x(y) = p_{\theta^{(t)}}(y | x)$

$$\log p_{\theta}(x) + \underbrace{\sum_{y \in \mathcal{Y}} \alpha_x(y) \log p_{\theta}(y \mid x)}_{g_{\theta}(x)} = \sum_{y \in \mathcal{Y}} \alpha_x(y) \log p_{\theta}(x, y)$$

If we choose a new $\theta^{(t+1)}$ that increases the r.h.s., then $\log p_{\theta}(x)$ will increase because $g_{\theta}(x)$ will decrease!

EM algorithm (alternative derivation):

- Introduce auxiliary variables $\alpha_x(y) \ge 0$, for each $x \in \mathcal{T}^m$, s.t. $\sum_{y \in \mathcal{Y}} \alpha_x(y) = 1$
- Construct a lower bound of the log-likelihood $L(\theta, \mathcal{T}^m) \ge L_B(\theta, \alpha, \mathcal{T}^m)$
- Maximise this lower bound by block-wise coordinate ascent.

Construct the bound:

$$L(\theta, \mathcal{T}^m) = \mathbb{E}_{\mathcal{T}^m} \left[\log \sum_{y \in \mathcal{Y}} p_\theta(x, y) \right] = \mathbb{E}_{\mathcal{T}^m} \left[\log \sum_{y \in \mathcal{Y}} \frac{\alpha_x(y)}{\alpha_x(y)} p_\theta(x, y) \right] \ge L_B(\theta, \alpha, \mathcal{T}^m) = \mathbb{E}_{\mathcal{T}^m} \sum_{y \in \mathcal{Y}} \left[\alpha_x(y) \log p_\theta(x, y) - \alpha_x(y) \log \alpha_x(y) \right]$$

The following equivalent representation shows the difference between $L(\theta, \mathcal{T}^m)$ and $L_B(\theta, \alpha, \mathcal{T}^m)$:

$$L_B(\theta, \alpha, \mathcal{T}^m) = \mathbb{E}_{\mathcal{T}^m} \left[\log p_\theta(x) \right] - \mathbb{E}_{\mathcal{T}^m} \left[D_{KL}(\alpha_x(y) \parallel p_\theta(y \mid x)) \right]$$

We see that the lower bound is tight if $\alpha_x(y) = p_\theta(y \mid x)$ holds $\forall x$ and $\forall y$.

Maximise $L_B(\theta, \alpha, \mathcal{T}^m)$ by block-coordinate ascent:

Start with some $\theta^{(0)}$ and iterate

E-step Fix the current $\theta^{(t)}$, maximise $L_B(\theta^{(t)}, \alpha, \mathcal{T}^m)$ w.r.t. α -s. This gives

$$\alpha_x^{(t)}(y) = p_{\theta^{(t)}}(y \mid x).$$

M-step Fix the current $\alpha^{(t)}$ and maximise $L_B(\theta, \alpha^{(t)}, \mathcal{T}^m)$ w.r.t. θ .

$$\theta^{(t+1)} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \mathbb{E}_{\mathcal{T}^m} \Big[\sum_{y \in \mathcal{Y}} \alpha_x^{(t)}(y) \log p_\theta(x, y) \Big]$$

This is equivalent to solving the MLE for annotated training data.

Claims:

• The sequence of likelihood values $L(\theta^{(t)}, \mathcal{T}^m)$, t = 1, 2, ... is increasing, and the sequence $\alpha^{(t)}$, t = 1, 2, ... is convergent (under mild assumptions).

There is no guarantee that the EM algorithm converges to a global maximum.

It is important to use a proper initialisation.

Example 1. We want to learn a simple model for different writing styles of digits

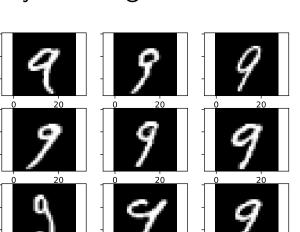
- $x = \{x_i \mid i \in D\}$ image on the pixel domain $D \in \mathbb{Z}^2$,
- $k \in K$ latent variable (mode indicator for the writing style),
- we assume a Naive Bayes model

$$p(x,k) = p(k) \prod_{i \in D} p(x_i \mid k)$$

Learning problem: Given i.i.d. training data $\mathcal{T}^m = \{x^j \mid j = 1, 2, ..., m\}$, estimate the mode probabilities p(k) and the grey value probabilities $p(x_i \mid k)$ for each image pixel $i \in D$ given the mode indicator $k \in K$.

Applying the EM algorithm: Start with some model and iterate the following steps **E-step** Given the current model estimate $p^{(t)}(x,k)$, compute the posterior mode probabilities for each image x in the training data \mathcal{T}^m , i.e. $\alpha_x^{(t)}(k) \coloneqq p^{(t)}(k \mid x)$. **M-step** Re-estimate the model by solving

$$\mathbb{E}_{\mathcal{T}^m} \left[\sum_{k \in K} \alpha_x^{(t)}(k) \left[\log p(k) + \sum_{i \in D} \log p(x_i \mid k) \right] \right] \to \max_p$$



10

10

10 20

Notice how the optimisation task in the M-step decomposes into independent small optimisation task. This gives the simple updates

$$p(k) = \mathbb{E}_{\mathcal{T}^m} \left[\alpha_x^{(t)}(k) \right]$$
$$p(x_i = b \mid k) = \frac{\mathbb{E}_{\mathcal{T}^m} \left[\alpha_x^{(t)}(k) \mid x_i = b \right]}{\mathbb{E}_{\mathcal{T}^m} \left[\alpha_x^{(t)}(k) \right]}$$

Additional reading:

Schlesinger, Hlavac, Ten Lectures on Statistical and Structural Pattern Recognition, Chapter 6, Kluwer 2002 (also available in Czech)

Thomas P. Minka, Expectation-Maximization as lower bound maximization, 1998 (short tutorial, available on the internet)

2. Bayesian Inference

Motivation:

- Both, ERM and generative learning by MLE are consistent under the respective regularity assumptions. Their estimation errors R(h_m) R(h_H) and ||θ_m θ^{*}|| are small in the limit of large training data sizes m.
- On the other hand, their estimates h_m and θ_m can deviate substantially from the respective optimal predictor/model in case of small training data sizes.
- Models should be based on our knowledge about the problem. We do not want to restrict the complexity of the model $p_{\theta}(x, y)$, $\theta \in \Theta$ just because we have only a small amount of training data.
- Deciding for a single model $\theta_m = e_{ML}(\mathcal{T}^m)$ might be sub-optimal in such situations.

2. Bayesian inference

Bayesian inference:

Interpret the unknown parameter $\theta \in \Theta$ as a **random** variable.

- Data distribution: parametric family of models $p(x, y | \theta)$, $\theta \in \Theta$,
- Prior distribution $p(\theta)$ on Θ .

The prior distribution $p(\theta)$ and i.i.d. training data $\mathcal{T}^m = \{(x_i, y_i) \mid i = 1, ..., m\}$ define a *posterior parameter distribution* $p(\theta \mid \mathcal{T}^m)$, given by

$$p(\theta \,|\, \mathcal{T}^m) = \frac{p(\theta)p(\mathcal{T}^m \,|\, \theta)}{p(\mathcal{T}^m)} \quad \text{with} \quad p(\mathcal{T}^m \,|\, \theta) = \prod_{i=1}^m p(x^i, y^i \,|\, \theta)$$

The probability $p(\mathcal{T}^m)$ is obtained by integrating over θ , i.e. $p(\mathcal{T}^m) = \int p(\theta) p(\mathcal{T}^m | \theta) d\theta$ and does not depend on θ .

Notice that the posterior distribution $p(\theta | \mathcal{T}^m) \propto p(\mathcal{T}^m | \theta) p(\theta)$ interpolates between the situation without any training data, i.e. m = 0 and the likelihood of training data for $m \to \infty$.

2. Bayesian inference

Let us use $p(\theta | \mathcal{T}^m)$, but decide for a particular value of θ for given training data \mathcal{T}^m ,

$$\theta_m = \underset{\theta \in \Theta}{\operatorname{arg\,max}} p(\theta \,|\, \mathcal{T}^m) = \underset{\theta \in \Theta}{\operatorname{arg\,max}} p(\mathcal{T}^m \,|\, \theta) \, p(\theta) = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \sum_{(x,y) \in \mathcal{T}^m} \log p(x,y \,|\, \theta) + \log p(\theta)$$

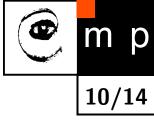
This results in an ML estimate with an additional regulariser

$$\theta_m = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \Big[\frac{1}{m} \sum_{(x,y) \in \mathcal{T}^m} \log p(x,y \,|\, \theta) + \frac{1}{m} \log p(\theta) \Big]$$

Example 2. We want to learn a DNN classifier with squashing activation functions (e.g. tanh or sigmoid). Assuming a Gaussian prior for the network weights, i.e. $w \sim \mathcal{N}(0, \sigma)$, we get the learning objective

$$\frac{1}{m} \sum_{(x,y)\in\mathcal{T}^m} \log p(y|x;w) - \frac{1}{2m\sigma^2} \|w\|^2 \to \max_w$$

This enforces a considerable fraction of neurons to have small weights and thus also small activations. They will therefore operate in a quasi linear regime.



2. Bayesian inference

A more powerful approach uses the posterior distribution $p(\theta | \mathcal{T}^m) \propto p(\mathcal{T}^m | \theta) p(\theta)$ to construct model mixtures and predictors. Consider the posterior probability to observe a pair (x, y) by marginalising over $\theta \in \Theta$:

$$p(x, y \,|\, \mathcal{T}^m) = \frac{1}{p(\mathcal{T}^m)} \int_{\Theta} p(\mathcal{T}^m \,|\, \theta) \, p(\theta) \, p(x, y \,|\, \theta) \, d\theta$$

This is a mixture of distributions with mixture weights $\alpha_m(\theta) \propto p(\mathcal{T}^m | \theta) p(\theta)$.

The Bayes optimal predictor w.r.t. 0/1 loss for this model mixture is

$$h(x, \mathcal{T}^m) = \underset{y \in \mathcal{Y}}{\operatorname{arg\,max}} \int_{\Theta} \underbrace{p(\theta) \, p(\mathcal{T}^m \,|\, \theta)}_{\alpha_m(\theta)} \, p(x, y \,|\, \theta) \, d\theta = \underset{y \in \mathcal{Y}}{\operatorname{arg\,max}} \int_{\Theta} \alpha_m(\theta) \, p(x, y \,|\, \theta) \, d\theta$$

Notice:

- the mixture weights $\alpha_m(\theta)$ interpolate between the situation without any training data, i.e. m = 0 and the likelihood of training data for $m \to \infty$.
 - similar approaches for ERM lead to *Ensembling* methods (see lectures 12,13).

3. Variational Bayesian inference

Variational Bayesian inference:

Computing the integral $\int_{\Theta} p(\theta \,|\, \mathcal{T}^m) \, p(x, y \,|\, \theta) \, d\theta$ is in most cases not tractable.

We can approximate $p(\theta | \mathcal{T}^m)$ by some simple distribution $q_{\varphi}(\theta)$, $\varphi \in \Phi$ and try find the optimal parameter φ by minimising the Kullback-Leibler divergence

$$D_{KL}(q_{\varphi}(\theta) \parallel p(\theta \mid \mathcal{T}^{m})) = D_{KL}(q_{\varphi}(\theta) \parallel p(\theta)) - \int_{\Theta} q_{\varphi}(\theta) \log p(\mathcal{T}^{m} \mid \theta) \, d\theta + c \to \min_{\varphi}$$

Then we use $q_{\varphi}(\theta)$ for constructing the model mixture and predictor (e.g. for 0/1 loss)

$$h(x) = \underset{y}{\arg\max} \int_{\Theta} q_{\varphi}(\theta) \, p(x, y \,|\, \theta) \, d\theta$$

The remaining integral over θ can be often further simplified by sampling $\theta_i \sim q_{\varphi}(\theta)$, i.e.

$$\int_{\Theta} q_{\varphi}(\theta) p(x, y \,|\, \theta) \, d\theta \approx \frac{1}{m} \sum_{i=1}^{n} p(x, y \,|\, \theta_i)$$

3. Variational Bayesian inference

Example 3 (Bayesian inference for a single neuron). Let us consider a single neuron modelling class probabilities for $y = \pm 1$

$$p(y | x; w) = \sigma(y \langle w, x \rangle),$$

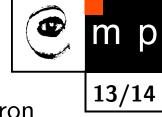
where $\sigma()$ denotes the sigmoid function. We assume the prior probability for the neuron weights $p(w) = \mathcal{N}(w; 0, \mathbb{I})$.

Given a training set $\mathcal{T}^m = \{(x^i, y^i) \mid i = 1, \dots, m\}$, the posterior weight distribution is

$$p(w | \mathcal{T}^m) \propto p(w) \prod_{(x,y) \in \mathcal{T}^m} p(y | x; w)$$

We will approximate it by a normal distribution $q_{\mu}(w) = \mathcal{N}(w; \mu, \mathbb{I})$. We must solve

$$\int_{\mathbb{R}^n} q_{\mu}(w) \sum_{(x,y)\in\mathcal{T}^m} \log \sigma \left(y \langle w, x \rangle \right) dw - D_{KL}(q_{\mu}(w) \parallel p(w)) \to \max_{\mu}$$



3. Variational Bayesian inference

The KL-divergence can be computed and differentiated in closed form.

Let us discuss computing the gradient of the first term

$$\int_{\mathbb{R}^n} q_{\mu}(w) \sum_{(x,y)\in\mathcal{T}^m} \log \sigma \left(y\langle w, x \rangle \right) dw \stackrel{w=v-\mu}{=} \int_{\mathbb{R}^n} q_0(v) \sum_{(x,y)\in\mathcal{T}^m} \log \sigma \left(y\langle v-\mu, x \rangle \right) dv$$

We can use a stochastic gradient estimator by

- 1. sample $v_i \sim q_0(v)$
- 2. draw a mini-batch ${\cal B}$ from training data and estimate the gradient by

$$g = \nabla_{\mu} \sum_{(x,y) \in \mathcal{B}} \log \sigma \left(y \langle v_i - \mu, x \rangle \right)$$

