Statistical Machine Learning (BE4M33SSU) Lecture 9: EM algorithm; Bayesian learning

Czech Technical University in Prague

Expectation Maximisation algorithm

Bayesian inference

Variational Bayesian inference

Unsupervised generative learning:

- The joint p.d. $p_{\theta}(x,y)$, $\theta \in \Theta$ is known up to the parameter $\theta \in \Theta$,
- given training data $\mathcal{T}^m = \{x^j \in \mathcal{X} \mid i = 1, 2, \dots, m\}$ i.i.d. generated from p_{θ^*} .

How shall we implement the MLE

$$e_{ML}(\mathcal{T}^m) = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \frac{1}{m} \sum_{x \in \mathcal{T}^m} \log p_{\theta}(x) = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \mathbb{E}_{\mathcal{T}^m} \Big[\log \sum_{y \in \mathcal{Y}} p_{\theta}(x, y) \Big]$$

- If θ is a single parameter or a vector of homogeneous parameters \Rightarrow maximise the log-likelihood directly.
- If θ is a collection of heterogeneous parameters \Rightarrow apply the **Expectation Maximisation Algorithm** (Schlesinger, 1968, Sundberg, 1974, Dempster, Laird, and Rubin, 1977)

EM algorithm:

- Introduce auxiliary variables $\alpha_x(y) \ge 0$, for each $x \in \mathcal{T}^m$, s.t. $\sum_{y \in \mathcal{Y}} \alpha_x(y) = 1$
- Construct a lower bound of the log-likelihood $L(\theta, \mathcal{T}^m) \ge L_B(\theta, \alpha, \mathcal{T}^m)$
- Maximise this lower bound by block-wise coordinate ascent.

Construct the bound:

$$L(\theta, \mathcal{T}^m) = \mathbb{E}_{\mathcal{T}^m} \left[\log \sum_{y \in \mathcal{Y}} p_\theta(x, y) \right] = \mathbb{E}_{\mathcal{T}^m} \left[\log \sum_{y \in \mathcal{Y}} \frac{\alpha_x(y)}{\alpha_x(y)} p_\theta(x, y) \right] \ge L_B(\theta, \alpha, \mathcal{T}^m) = \mathbb{E}_{\mathcal{T}^m} \sum_{y \in \mathcal{Y}} \left[\alpha_x(y) \log p_\theta(x, y) - \alpha_x(y) \log \alpha_x(y) \right]$$

The following equivalent representation shows the difference between $L(\theta, \mathcal{T}^m)$ and $L_B(\theta, \alpha, \mathcal{T}^m)$:

$$L_B(\theta, \alpha, \mathcal{T}^m) = \mathbb{E}_{\mathcal{T}^m} \left[\log p_\theta(x) \right] - \mathbb{E}_{\mathcal{T}^m} \left[D_{KL}(\alpha_x(y) \parallel p_\theta(y \mid x)) \right]$$

We see that the lower bound is tight if $\alpha_x(y) = p_\theta(y \mid x)$ holds $\forall x$ and $\forall y$.



Maximise $L_B(\theta, \alpha, \mathcal{T}^m)$ by block-coordinate ascent:

Start with some $\theta^{(0)}$ and iterate

E-step Fix the current $\theta^{(t)}$, maximise $L_B(\theta^{(t)}, \alpha, \mathcal{T}^m)$ w.r.t. α -s. This gives

$$\alpha_x^{(t)}(y) = p_{\theta^{(t)}}(y \mid x).$$

M-step Fix the current $\alpha^{(t)}$ and maximise $L_B(\theta, \alpha^{(t)}, \mathcal{T}^m)$ w.r.t. θ .

$$\theta^{(t+1)} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \mathbb{E}_{\mathcal{T}^m} \Big[\sum_{y \in \mathcal{Y}} \alpha_x^{(t)}(y) \log p_\theta(x, y) \Big]$$

This is equivalent to solving the MLE for annotated training data.

Claims:

• The sequence of likelihood values $L(\theta^{(t)}, \mathcal{T}^m)$, t = 1, 2, ... is increasing, and the sequence $\alpha^{(t)}$, t = 1, 2, ... is convergent (under mild assumptions).

There is no guarantee that the EM algorithm converges to a global maximum.

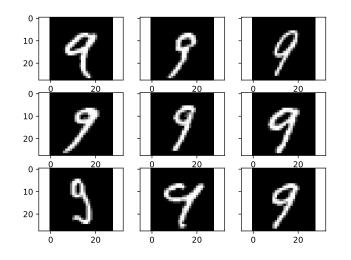
It is important to use a proper initialisation.

Example: Latent mode model (mixture) for images of digits

- $x = \{x_i \mid i \in D\}$ image on the pixel domain $D \in \mathbb{Z}^2$,
- $x_i \in \{0, 1, 2, \dots, 255\}$
- $k \in K$ latent variable (mode indicator),
- joint distribution Naive Bayes model

$$p(x,k) = p(k) \prod_{i \in D} p(x_i \mid k)$$

(2) m p 5/15



Learning problem: Given i.i.d. training data $\mathcal{T}^m = \{x^j \mid j = 1, 2, ..., m\}$, estimate the mode probabilities p(k) and the conditional probabilities $p(x_i \mid k), \forall x_i \in \mathcal{B}, k \in K$ and $i \in D$.

Applying the EM algorithm: Start with some model $p^{(0)}(k)$, $p^{(0)}(x_i | k)$ and iterate the following steps until convergence.

E-step Given the current model estimate $p^{(t)}(k)$, $p^{(t)}(x_i | k)$, compute the posterior mode probabilities for each image x in the training data \mathcal{T}^m

$$\alpha_x^{(t)}(k) = p^{(t)}(k \mid x) = \frac{p^{(t)}(k) \prod_{i \in D} p^{(t)}(x_i \mid k)}{\sum_{k'} p^{(t)}(k') \prod_{i \in D} p^{(t)}(x_i \mid k')}.$$

M-step Re-estimate the model by solving

$$\mathbb{E}_{\mathcal{T}^m} \Big[\sum_{k \in K} \alpha_x^{(t)}(k) \big[\log p(k) + \sum_{i \in D} \log p(x_i \mid k) \big] \Big] \to \max_p$$

This gives

$$p^{(t+1)}(k) = \mathbb{E}_{\mathcal{T}^m} \left[\alpha_x^{(t)}(k) \right]$$
$$p^{(t+1)}(x_i = b \mid k) = \frac{\mathbb{E}_{\mathcal{T}^m} \left[\alpha_x^{(t)}(k) \mid x_i = b \right]}{\mathbb{E}_{\mathcal{T}^m} \left[\alpha_x^{(t)}(k) \right]}$$

Additional reading:

Schlesinger, Hlavac, Ten Lectures on Statistical and Structural Pattern Recognition, Chapter 6, Kluwer 2002 (also available in Czech)

Thomas P. Minka, Expectation-Maximization as lower bound maximization, 1998 (short tutorial, available on the internet)

р

7/15

Motivation:

Both, ERM and generative learning by MLE are consistent under the respective regularity assumptions. Their estimation errors $R(h_m) - R(h_H)$ and $\|\theta_m - \theta^*\|$ are small in the limit of large training data sizes m. On the other hand, their estimates h_m and θ_m can deviate by large margin from the respective optima in case of small training data sizes.

Example: We want to learn deep NNs with $> 10^6$ parameters on training data T^m with $m < 10^6$.

• Models should be based on our knowledge about the problem. E.g. we do not want to restrict the complexity of the model $p_{\theta}(x, y)$, $\theta \in \Theta$ just because we have only a small amount of training data.

9/15

Bayesian inference: main assumptions & ingredients

Interpret the unknown parameter $\theta \in \Theta$ as a **random** variable.

- Data distribution: parametric family of models $p(x, y | \theta)$, $\theta \in \Theta$,
- Prior distribution $p(\theta)$ on Θ .

Prior distribution $p(\theta)$ and i.i.d. training data $\mathcal{T}^m = \{(x_i, y_i) \mid i = 1, ..., m\} \Rightarrow$ posterior parameter distribution $p(\theta \mid \mathcal{T}^m)$, given by

$$p(\theta \,|\, \mathcal{T}^m) = \frac{p(\theta)p(\mathcal{T}^m \,|\, \theta)}{p(\mathcal{T}^m)} \quad \text{with} \quad p(\mathcal{T}^m \,|\, \theta) = \prod_{i=1}^m p(x^i, y^i \,|\, \theta).$$

Notice:

- a point estimate of θ is no longer needed!
- the posterior distribution $p(\theta | \mathcal{T}^m) \propto p(\mathcal{T}^m | \theta) p(\theta)$ interpolates between the situation without any training data, i.e. m = 0 and the likelihood of training data for $m \to \infty$.

Example 1. Consider the model

$$p(x \mid \mu) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2\sigma^2}(x-\mu)^2\right] \quad \text{and} \quad p(\mu) = \frac{1}{\sqrt{2\pi}\sigma_0} \exp\left[-\frac{1}{2\sigma_0^2}\mu^2\right]$$

then we have

$$p(x,\mu) = p(x \mid \mu) p(\mu) = \frac{1}{2\pi\sigma\sigma_0} \exp\left[-\frac{1}{2\sigma^2}(x-\mu)^2 - \frac{1}{2\sigma_0^2}\mu^2\right],$$

$$p(x) = \int_{\mathbb{R}} p(x \mid \mu) p(\mu) d\mu = \frac{1}{\sqrt{2\pi(\sigma^2 + \sigma_0^2)}} \exp\left[-\frac{x^2}{2(\sigma^2 + \sigma_0^2)}\right]$$
$$p(\mu \mid x) = \frac{p(x \mid \mu) p(\mu)}{p(x)} \propto \exp\left[-\frac{x^2}{2(\sigma^2 + \sigma_0^2)} - \frac{1}{2\sigma^2}(x - \mu)^2 - \frac{1}{2\sigma_0^2}\mu^2\right]$$

Notice the difference when estimating μ from a single example x:

•
$$e_{ML}(x) = x$$
.
• $\arg \max_{\mu} p(\mu \mid x) = \frac{1}{1 + \sigma^2 / \sigma_0^2} x$.

Sidestep: We consider θ as random with prior distribution $p(\theta)$, but go for a point estimate given training data $\mathcal{T}^m = \{(x_i, y_i) \mid i = 1, ..., m\}$:

$$\theta_m = \underset{\theta \in \Theta}{\operatorname{arg\,max}} p(\theta \,|\, \mathcal{T}^m) = \underset{\theta \in \Theta}{\operatorname{arg\,max}} p(\mathcal{T}^m \,|\, \theta) \, p(\theta) = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \sum_{(x,y) \in \mathcal{T}^m} \log p(x,y \,|\, \theta) + \log p(\theta)$$

This results in an ML estimate with an additional regulariser

$$\theta_m = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \Big[\frac{1}{m} \sum_{(x,y) \in \mathcal{T}^m} \log p(x,y \,|\, \theta) + \frac{1}{m} \log p(\theta) \Big]$$

Example 2. We want to learn a DNN classifier with squashing activation functions (e.g. tanh or sigmoid). Assuming a Gaussian prior $\mathcal{N}(0,\sigma)$ for the network weights, we get the learning objective

$$\frac{1}{m} \sum_{(x,y)\in\mathcal{T}^m} \log p(y|x,w) - \frac{1}{2m\sigma^2} \|w\|^2 \to \max_w$$

This enforces a considerable fraction of neurons to have small weights and thus also small activations. They will therefore operate in a quasi linear regime.

Retaining the posterior distribution $p(\theta | \mathcal{T}^m) \propto p(\mathcal{T}^m | \theta) p(\theta)$, we get the posterior probability to observe a pair (x, y) by marginalising over $\theta \in \Theta$:

$$p(x, y \,|\, \mathcal{T}^m) = \frac{1}{p(\mathcal{T}^m)} \int_{\Theta} p(\mathcal{T}^m \,|\, \theta) \, p(x, y \,|\, \theta) \, p(\theta) \, d\theta$$

This is a mixture of distributions with mixture weights $\alpha_m(\theta) \propto p(\mathcal{T}^m | \theta) p(\theta)$.

The Bayes optimal predictor w.r.t. 0/1 loss for this model mixture is

$$h(x, \mathcal{T}^m) = \underset{y \in \mathcal{Y}}{\operatorname{arg\,max}} \int_{\Theta} \underbrace{p(\theta) \, p(\mathcal{T}^m \,|\, \theta)}_{\alpha_m(\theta) \propto} p(x, y \,|\, \theta) \, d\theta = \underset{y \in \mathcal{Y}}{\operatorname{arg\,max}} \int_{\Theta} \alpha_m(\theta) \, p(x, y \,|\, \theta) \, d\theta$$

Notice:

• the mixture weights $\alpha_m(\theta)$ interpolate between the situation without any training data, i.e. m = 0 and the likelihood of training data for $m \to \infty$.

similar approaches for ERM lead to *Ensembling* methods (see lectures 12,13).

3. Variational Bayesian inference

Computing integrals like $\int_{\Theta} p(\mathcal{T}^m | \theta) p(\theta) d\theta$ is in most cases not tractable.

Variational Bayesian inference: Approximate $p(\theta | \mathcal{T}^m)$ by some simple distribution $q_\beta(\theta)$ and find the optimal parameter β by minimising the Kullback-Leibler divergence

$$D_{KL}(q_{\beta}(\theta) \parallel p(\theta \mid \mathcal{T}^{m})) = D_{KL}(q_{\beta}(\theta) \parallel p(\theta)) - \int_{\Theta} q_{\beta}(\theta) \log p(\mathcal{T}^{m} \mid \theta) \, d\theta + c \to \min_{\beta}$$

use $q_{\beta}(\theta)$ with optimal β for prediction (e.g. for 0/1 loss)

$$h(x) = \underset{y}{\operatorname{arg\,max}} \int_{\Theta} q_{\beta}(\theta) \, p(x, y \,|\, \theta) \, d\theta$$

The integrals over θ can be often further simplified by sampling $\theta_i \sim q_\beta(\theta)$

$$\int_{\Theta} q_{\beta}(\theta) f(\theta) \, d\theta \approx \frac{1}{m} \sum_{i=1}^{n} f(\theta_i)$$

3. Variational Bayesian inference

Example 3 (Bayesian inference for DNNs). Let us consider the optimisation task

$$\int_{\mathbb{R}^n} q_{\mu}(w) \log p(\mathcal{T}^m \,|\, w) \, dw - D_{KL}(q_{\mu}(w) \parallel p(w)) \to \max_{\mu}$$

for the following situation & assumptions:

• p(y | x, w) is a classifier DNN with weights w, i.e.

$$p(y|x,w) = \langle y, \text{softmax}(\eta(x,w)) \rangle$$

where y is the one-hot encoding of the class and $\eta(x,w)$ is the network output layer pre-activation.

• The prior distribution for the weights is $p(w) = \mathcal{N}(w; 0, \mathbb{I})$.

• We approximate the posterior weight distribution by $q_{\mu}(w) = \mathcal{N}(w; \mu, \mathbb{I})$

3. Variational Bayesian inference

The training objective (variational Bayesian inference) is:

$$\int_{\mathbb{R}^n} q_{\mu}(w) \log p(\mathcal{T}^m | w) \, dw - D_{KL}(q_{\mu}(w) \parallel p(w)) \to \max_{\mu},$$

where \mathcal{T}^m denotes i.i.d. training data. We have

$$\mathbb{E}_{q_{\mu}(w)}\left[\log p(\mathcal{T}^{m} | w)\right] - D_{KL}(\mathcal{N}(\mu, \mathbb{I}) \parallel \mathcal{N}(0, \mathbb{I})) \to \max_{\mu}$$

This task can be solved by SGD w.r.t. mini-batches and sampled network weights.

- the KL-divergence can be computed in closed form,
- approximate the integral in the first term by sampling from $q_{\mu}(w) = \mathcal{N}(w; \mu, \mathbb{I})$ (with current $\mu^{(t)}$),
- to compute gradients w.r.t. μ , apply re-parametrisation

$$w \sim \mathcal{N}(\mu, \mathbb{I}) \Leftrightarrow w = \epsilon + \mu \text{ with } \epsilon \sim \mathcal{N}(0, \mathbb{I})$$

The SGD step reads: sample a mini-batch, sample $\epsilon \sim \mathcal{N}(0, \mathbb{I})$, set $w = \mu^{(t)} + \epsilon$, apply the network and compute the gradient w.r.t. μ and apply a learning step $\Rightarrow \mu^{(t+1)}$.

