# Statistical Machine Learning (BE4M33SSU) Lecture 9: EM algorithm; Bayesian learning

Czech Technical University in Prague

Expectation Maximisation algorithm

Bayesian inference

Variational Bayesian inference

#### Unsupervised generative learning:

- The joint p.d.  $p_{\theta}(x,y)$ ,  $\theta \in \Theta$  is known up to the parameter  $\theta \in \Theta$ ,
- given training data  $\mathcal{T}^m = \{x^j \in \mathcal{X} \mid i = 1, 2, \dots, m\}$  i.i.d. generated from  $p_{\theta^*}$ .

How shall we implement the MLE

$$e_{ML}(\mathcal{T}^m) = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \frac{1}{m} \sum_{x \in \mathcal{T}^m} \log p_{\theta}(x) = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \mathbb{E}_{\mathcal{T}^m} \Big[ \log \sum_{y \in \mathcal{Y}} p_{\theta}(x, y) \Big]$$

- If  $\theta$  is a single parameter or a vector of homogeneous parameters  $\Rightarrow$  maximise the log-likelihood directly.
- If  $\theta$  is a collection of heterogeneous parameters  $\Rightarrow$  apply the **Expectation Maximisation Algorithm** (Schlesinger, 1968, Sundberg, 1974, Dempster, Laird, and Rubin, 1977)



#### EM algorithm:

- Introduce auxiliary variables  $\alpha_x(y) \ge 0$ , for each  $x \in \mathcal{T}^m$ , s.t.  $\sum_{y \in \mathcal{Y}} \alpha_x(y) = 1$
- Construct a lower bound of the log-likelihood  $L(\theta, \mathcal{T}^m) \ge L_B(\theta, \alpha, \mathcal{T}^m)$
- Maximise this lower bound by block-wise coordinate ascent.

Construct the bound:

$$L(\theta, \mathcal{T}^m) = \mathbb{E}_{\mathcal{T}^m} \left[ \log \sum_{y \in \mathcal{Y}} p_\theta(x, y) \right] = \mathbb{E}_{\mathcal{T}^m} \left[ \log \sum_{y \in \mathcal{Y}} \frac{\alpha_x(y)}{\alpha_x(y)} p_\theta(x, y) \right] \ge L_B(\theta, \alpha, \mathcal{T}^m) = \mathbb{E}_{\mathcal{T}^m} \sum_{y \in \mathcal{Y}} \left[ \alpha_x(y) \log p_\theta(x, y) - \alpha_x(y) \log \alpha_x(y) \right]$$

The following equivalent representation shows the difference between  $L(\theta, \mathcal{T}^m)$  and  $L_B(\theta, \alpha, \mathcal{T}^m)$ :

$$L_B(\theta, \alpha, \mathcal{T}^m) = \mathbb{E}_{\mathcal{T}^m} \left[ \log p_\theta(x) \right] - \mathbb{E}_{\mathcal{T}^m} \left[ D_{KL}(\alpha_x(y) \parallel p_\theta(y \mid x)) \right]$$

We see that the lower bound is tight if  $\alpha_x(y) = p_\theta(y \mid x)$  holds  $\forall x$  and  $\forall y$ .



Maximise  $L_B(\theta, \alpha, \mathcal{T}^m)$  by block-coordinate ascent:

Start with some  $\theta^{(0)}$  and iterate

**E-step** Fix the current  $\theta^{(t)}$ , maximise  $L_B(\theta^{(t)}, \alpha, \mathcal{T}^m)$  w.r.t.  $\alpha$ -s. This gives

$$\alpha_x^{(t)}(y) = p_{\theta^{(t)}}(y \mid x).$$

**M-step** Fix the current  $\alpha^{(t)}$  and maximise  $L_B(\theta, \alpha^{(t)}, \mathcal{T}^m)$  w.r.t.  $\theta$ .

$$\theta^{(t+1)} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \mathbb{E}_{\mathcal{T}^m} \Big[ \sum_{y \in \mathcal{Y}} \alpha_x^{(t)}(y) \log p_\theta(x, y) \Big]$$

This is equivalent to solving the MLE for annotated training data.

#### **Claims:**

• The sequence of likelihood values  $L(\theta^{(t)}, \mathcal{T}^m)$ , t = 1, 2, ... is increasing, and the sequence  $\alpha^{(t)}$ , t = 1, 2, ... is convergent (under mild assumptions).

There is no guarantee that the EM algorithm converges to a global maximum.

It is important to use a proper initialisation.

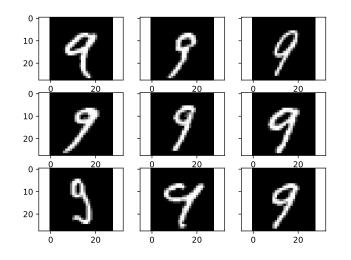


**Example:** Latent mode model (mixture) for images of digits

- $x = \{x_i \mid i \in D\}$  image on the pixel domain  $D \in \mathbb{Z}^2$ ,
- $x_i \in \{0, 1, 2, \dots, 255\}$
- $k \in K$  latent variable (mode indicator),
- joint distribution Naive Bayes model

$$p(x,k) = p(k) \prod_{i \in D} p(x_i \mid k)$$

**(2)** m p 5/15



**Learning problem:** Given i.i.d. training data  $\mathcal{T}^m = \{x^j \mid j = 1, 2, ..., m\}$ , estimate the mode probabilities p(k) and the conditional probabilities  $p(x_i \mid k), \forall x_i \in \mathcal{B}, k \in K$  and  $i \in D$ .

Applying the EM algorithm: Start with some model  $p^{(0)}(k)$ ,  $p^{(0)}(x_i | k)$  and iterate the following steps until convergence.

**E-step** Given the current model estimate  $p^{(t)}(k)$ ,  $p^{(t)}(x_i | k)$ , compute the posterior mode probabilities for each image x in the training data  $\mathcal{T}^m$ 

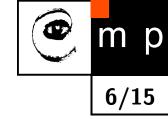
$$\alpha_x^{(t)}(k) = p^{(t)}(k \mid x) = \frac{p^{(t)}(k) \prod_{i \in D} p^{(t)}(x_i \mid k)}{\sum_{k'} p^{(t)}(k') \prod_{i \in D} p^{(t)}(x_i \mid k')}.$$

M-step Re-estimate the model by solving

$$\mathbb{E}_{\mathcal{T}^m} \Big[ \sum_{k \in K} \alpha_x^{(t)}(k) \big[ \log p(k) + \sum_{i \in D} \log p(x_i \mid k) \big] \Big] \to \max_p$$

This gives

$$p^{(t+1)}(k) = \mathbb{E}_{\mathcal{T}^m} \left[ \alpha_x^{(t)}(k) \right]$$
$$p^{(t+1)}(x_i = b \mid k) = \frac{\mathbb{E}_{\mathcal{T}^m} \left[ \alpha_x^{(t)}(k) \mid x_i = b \right]}{\mathbb{E}_{\mathcal{T}^m} \left[ \alpha_x^{(t)}(k) \right]}$$



#### Additional reading:

Schlesinger, Hlavac, Ten Lectures on Statistical and Structural Pattern Recognition, Chapter 6, Kluwer 2002 (also available in Czech)

Thomas P. Minka, Expectation-Maximization as lower bound maximization, 1998 (short tutorial, available on the internet)

р

7/15



#### Motivation:

Both, ERM and generative learning by MLE are consistent under the respective regularity assumptions. Their estimation errors  $R(h_m) - R(h_H)$  and  $\|\theta_m - \theta^*\|$  are small in the limit of large training data sizes m. On the other hand, their estimates  $h_m$  and  $\theta_m$  can deviate by large margin from the respective optima in case of small training data sizes.

*Example:* We want to learn deep NNs with  $> 10^6$  parameters on training data  $T^m$  with  $m < 10^6$ .

• Models should be based on our knowledge about the problem. E.g. we do not want to restrict the complexity of the model  $p_{\theta}(x, y)$ ,  $\theta \in \Theta$  just because we have only a small amount of training data.

9/15

Bayesian inference: main assumptions & ingredients

Interpret the unknown parameter  $\theta \in \Theta$  as a **random** variable.

- Data distribution: parametric family of models  $p(x, y | \theta)$ ,  $\theta \in \Theta$ ,
- Prior distribution  $p(\theta)$  on  $\Theta$ .

Prior distribution  $p(\theta)$  and i.i.d. training data  $\mathcal{T}^m = \{(x_i, y_i) \mid i = 1, ..., m\} \Rightarrow$ posterior parameter distribution  $p(\theta \mid \mathcal{T}^m)$ , given by

$$p(\theta \,|\, \mathcal{T}^m) = \frac{p(\theta)p(\mathcal{T}^m \,|\, \theta)}{p(\mathcal{T}^m)} \quad \text{with} \quad p(\mathcal{T}^m \,|\, \theta) = \prod_{i=1}^m p(x^i, y^i \,|\, \theta).$$

Notice:

- a point estimate of  $\theta$  is no longer needed!
- the posterior distribution  $p(\theta | \mathcal{T}^m) \propto p(\mathcal{T}^m | \theta) p(\theta)$  interpolates between the situation without any training data, i.e. m = 0 and the likelihood of training data for  $m \to \infty$ .



**Example 1.** Consider the model

$$p(x \mid \mu) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2\sigma^2}(x-\mu)^2\right] \quad \text{and} \quad p(\mu) = \frac{1}{\sqrt{2\pi}\sigma_0} \exp\left[-\frac{1}{2\sigma_0^2}\mu^2\right]$$

then we have

$$p(x,\mu) = p(x \mid \mu) p(\mu) = \frac{1}{2\pi\sigma\sigma_0} \exp\left[-\frac{1}{2\sigma^2}(x-\mu)^2 - \frac{1}{2\sigma_0^2}\mu^2\right],$$

$$p(x) = \int_{\mathbb{R}} p(x \mid \mu) p(\mu) d\mu = \frac{1}{\sqrt{2\pi(\sigma^2 + \sigma_0^2)}} \exp\left[-\frac{x^2}{2(\sigma^2 + \sigma_0^2)}\right]$$
$$p(\mu \mid x) = \frac{p(x \mid \mu) p(\mu)}{p(x)} \propto \exp\left[-\frac{x^2}{2(\sigma^2 + \sigma_0^2)} - \frac{1}{2\sigma^2}(x - \mu)^2 - \frac{1}{2\sigma_0^2}\mu^2\right]$$

Notice the difference when estimating  $\mu$  from a single example x:

• 
$$e_{ML}(x) = x$$
.  
•  $\arg \max_{\mu} p(\mu \mid x) = \frac{1}{1 + \sigma^2 / \sigma_0^2} x$ .



**Sidestep:** We consider  $\theta$  as random with prior distribution  $p(\theta)$ , but go for a point estimate given training data  $\mathcal{T}^m = \{(x_i, y_i) \mid i = 1, ..., m\}$ :

$$\theta_m = \underset{\theta \in \Theta}{\operatorname{arg\,max}} p(\theta \,|\, \mathcal{T}^m) = \underset{\theta \in \Theta}{\operatorname{arg\,max}} p(\mathcal{T}^m \,|\, \theta) \, p(\theta) = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \sum_{(x,y) \in \mathcal{T}^m} \log p(x,y \,|\, \theta) + \log p(\theta)$$

This results in an ML estimate with an additional regulariser

$$\theta_m = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \Big[ \frac{1}{m} \sum_{(x,y) \in \mathcal{T}^m} \log p(x,y \,|\, \theta) + \frac{1}{m} \log p(\theta) \Big]$$

**Example 2.** We want to learn a DNN classifier with squashing activation functions (e.g. tanh or sigmoid). Assuming a Gaussian prior  $\mathcal{N}(0,\sigma)$  for the network weights, we get the learning objective

$$\frac{1}{m} \sum_{(x,y)\in\mathcal{T}^m} \log p(y|x,w) - \frac{1}{2m\sigma^2} \|w\|^2 \to \max_w$$

This enforces a considerable fraction of neurons to have small weights and thus also small activations. They will therefore operate in a quasi linear regime.



Retaining the posterior distribution  $p(\theta | \mathcal{T}^m) \propto p(\mathcal{T}^m | \theta) p(\theta)$ , we get the posterior probability to observe a pair (x, y) by marginalising over  $\theta \in \Theta$ :

$$p(x, y \,|\, \mathcal{T}^m) = \frac{1}{p(\mathcal{T}^m)} \int_{\Theta} p(\mathcal{T}^m \,|\, \theta) \, p(x, y \,|\, \theta) \, p(\theta) \, d\theta$$

This is a mixture of distributions with mixture weights  $\alpha_m(\theta) \propto p(\mathcal{T}^m | \theta) p(\theta)$ .

The Bayes optimal predictor w.r.t. 0/1 loss for this model mixture is

$$h(x, \mathcal{T}^m) = \underset{y \in \mathcal{Y}}{\operatorname{arg\,max}} \int_{\Theta} \underbrace{p(\theta) \, p(\mathcal{T}^m \,|\, \theta)}_{\alpha_m(\theta) \propto} p(x, y \,|\, \theta) \, d\theta = \underset{y \in \mathcal{Y}}{\operatorname{arg\,max}} \int_{\Theta} \alpha_m(\theta) \, p(x, y \,|\, \theta) \, d\theta$$

Notice:

• the mixture weights  $\alpha_m(\theta)$  interpolate between the situation without any training data, i.e. m = 0 and the likelihood of training data for  $m \to \infty$ .

similar approaches for ERM lead to *Ensembling* methods (see lectures 12,13).

### 3. Variational Bayesian inference

Computing integrals like  $\int_{\Theta} p(\mathcal{T}^m | \theta) p(\theta) d\theta$  is in most cases not tractable.

**Variational Bayesian inference:** Approximate  $p(\theta | \mathcal{T}^m)$  by some simple distribution  $q_\beta(\theta)$  and find the optimal parameter  $\beta$  by minimising the Kullback-Leibler divergence

$$D_{KL}(q_{\beta}(\theta) \parallel p(\theta \mid \mathcal{T}^{m})) = D_{KL}(q_{\beta}(\theta) \parallel p(\theta)) - \int_{\Theta} q_{\beta}(\theta) \log p(\mathcal{T}^{m} \mid \theta) \, d\theta + c \to \min_{\beta}$$

use  $q_{\beta}(\theta)$  with optimal  $\beta$  for prediction (e.g. for 0/1 loss)

$$h(x) = \underset{y}{\operatorname{arg\,max}} \int_{\Theta} q_{\beta}(\theta) \, p(x, y \,|\, \theta) \, d\theta$$

The integrals over  $\theta$  can be often further simplified by sampling  $\theta_i \sim q_\beta(\theta)$ 

$$\int_{\Theta} q_{\beta}(\theta) f(\theta) \, d\theta \approx \frac{1}{m} \sum_{i=1}^{n} f(\theta_i)$$



### 3. Variational Bayesian inference

**Example 3** (Bayesian inference for DNNs). Let us consider the optimisation task

$$\int_{\mathbb{R}^n} q_{\mu}(w) \log p(\mathcal{T}^m \,|\, w) \, dw - D_{KL}(q_{\mu}(w) \parallel p(w)) \to \max_{\mu}$$

for the following situation & assumptions:

• p(y | x, w) is a classifier DNN with weights w, i.e.

$$p(y|x,w) = \langle y, \text{softmax}(\eta(x,w)) \rangle$$

where y is the one-hot encoding of the class and  $\eta(x,w)$  is the network output layer pre-activation.

• The prior distribution for the weights is  $p(w) = \mathcal{N}(w; 0, \mathbb{I})$ .

• We approximate the posterior weight distribution by  $q_{\mu}(w) = \mathcal{N}(w; \mu, \mathbb{I})$ 



## 3. Variational Bayesian inference

The training objective (variational Bayesian inference) is:

$$\int_{\mathbb{R}^n} q_{\mu}(w) \log p(\mathcal{T}^m | w) \, dw - D_{KL}(q_{\mu}(w) \parallel p(w)) \to \max_{\mu},$$

where  $\mathcal{T}^m$  denotes i.i.d. training data. We have

$$\mathbb{E}_{q_{\mu}(w)}\left[\log p(\mathcal{T}^{m} | w)\right] - D_{KL}(\mathcal{N}(\mu, \mathbb{I}) \parallel \mathcal{N}(0, \mathbb{I})) \to \max_{\mu}$$

This task can be solved by SGD w.r.t. mini-batches and sampled network weights.

- the KL-divergence can be computed in closed form,
- approximate the integral in the first term by sampling from  $q_{\mu}(w) = \mathcal{N}(w; \mu, \mathbb{I})$  (with current  $\mu^{(t)}$ ),
- to compute gradients w.r.t.  $\mu$ , apply re-parametrisation

$$w \sim \mathcal{N}(\mu, \mathbb{I}) \Leftrightarrow w = \epsilon + \mu \text{ with } \epsilon \sim \mathcal{N}(0, \mathbb{I})$$

The SGD step reads: sample a mini-batch, sample  $\epsilon \sim \mathcal{N}(0, \mathbb{I})$ , set  $w = \mu^{(t)} + \epsilon$ , apply the network and compute the gradient w.r.t.  $\mu$  and apply a learning step  $\Rightarrow \mu^{(t+1)}$ .

