Quicksilver: fast deep learning registration

Yang et al, Neuroimage 2017

Jan Kybic

2020

Key features

- ► Deep learning-based
- ► Prediction/correction network
- Fast (11s on 1GPU for a 3D volume)
- ▶ Diffeomorphic transformation
- Large deformations (large deformation diffeomorphic metric mapping - LDDMM)
- Patch-based, patch pruning
- Uncertainty quantification
- Multimodal registration

Formulation

$$E(\Phi) = \operatorname{Reg}[\Phi] + \frac{1}{\sigma^2} \operatorname{Sim}[I_0 \circ \Phi^{-1}, I_1].$$

LDDMM is a non-parametric registration method which represents the transformation via spatio-temporal velocity fields. In particular, the sought-for mapping, Φ , is obtained via an integration of a spatio-temporal velocity field v(x,t) for unit time, where t indicates time and $t \in [0,1]$, such that $\Phi_t(x,t) = v(\Phi(x,t),t)$ and the sought-for mapping is $\Phi(x,1)$. To single-out desirable velocity-fields, non-

$$E(v) = \int_0^1 ||v||_L^2 dt + \frac{1}{\sigma^2} ||M \circ \Phi^{-1}(1) - T||^2,$$

s.t. $\Phi_t(x, t) = v(\Phi(x, t), t), \ \Phi(x, 0) = id$

Differential formulation $\Phi_t^{-1} + D\Phi^{-1}v = 0$

Classical solution

- forward transformation follow a particle in v. Ensures diffeomorphy
- optimization
 - current mismatch
 - solve (adjoint) system backward
 - radient of the velocity field at all t
 - ▶ update v

Shooting formulation

- ▶ find the shortest path (geodesics) between images
- \triangleright geodesic parameterized by initial Φ^{-1} and momentum m = Lv
- \blacktriangleright $\it m$ supported mainly on image edges, $\ m(x,t) = \lambda(x,t) \nabla I(x,t)$
- \triangleright v is a smoothed momentum, $v = L^{-1}m$

Method

- predict m patch-by-patch
- train network to predict *m*
- training data *m* found by numerical optimization
- m well predicted from patches, does not have to be smooth, zero in homogeneous regions

large stride, drop background patches

Network structure

encoder/decoder, I_1 loss function on m (not E), 3 decoders (easier to train)

Probabilistic network

- ▶ Instead of y = f(x), predict p(y|x.X, Y) for training data X, Y
- ightharpoonup variational inference for network weights W,minimize KL divergence of q(W) and p(W|X,Y)

$$q(\mathbf{W}_i) = \mathbf{M}_i \cdot \operatorname{diag}([z_{i,j}]_{j=1}^{K_i}), \quad z_{i,j} \sim \operatorname{Bernoulli}(d)$$
,

→dropout with probability 0.2

$$p(\mathbf{y}'|\mathbf{x}', \mathbf{X}, \mathbf{Y}) \approx \frac{1}{T} \sum_{t=1}^{T} \hat{f}(\mathbf{x}', \hat{\mathbf{w}})$$

▶ result=mean, variance →uncertainty estimate

Prediction/correction

- trained sequentially
- ▶ Mand $T \circ \Phi$ are in the same coordinate space, can be added

Datasets

- ► T1, T2 MR images
- ▶ training m obtain from T1 images \rightarrow learn also multimodal T1-T2 registration

Atlas-to-image example

blue - low uncertainty

Prediction/correction experiments

Quantitative results

	Deformation Error for each voxel [mm]							det J > 0
Data percentile for all voxels	0.3%	5%	25%	50%	75%	95%	99.7%	
Affine	0.0613	0.2520	0.6896	1.1911	1.8743	3.1413	5.3661	N/A
D, velocity, stride 5	0.0237	0.0709	0.1601	0.2626	0.4117	0.7336	1.5166	100%
D, velocity, stride 14	0.0254	0.075	0.1675	0.2703	0.415	0.743	1.5598	100%
D, deformation, stride 5	0.0223	0.0665	0.1549	0.2614	0.4119	0.7388	1.5845	56%
D, deformation, stride 14	0.0242	0.0721	0.1671	0.2772	0.4337	0.7932	1.6805	0%
P, momentum, stride 14, 50 samples	0.0166	0.0479	0.1054	0.1678	0.2546	0.4537	1.1049	100%
D, momentum, stride 5	0.0129	0.0376	0.0884	0.1534	0.2506	0.4716	1.1095	100%
D, momentum, stride 14	0.013	0.0372	0.0834	0.1359	0.2112	0.3902	0.9433	100%
D, momentum, stride 14, 40 epochs	0.0119	0.0351	0.0793	0.1309	0.2070	0.3924	0.9542	100%
D, momentum, stride 14 + correction	0.0104	0.0309	0.0704	0.1167	0.185	0.3478	0.841	100%

Target overlap

Multimodal registration

Figure 10: Example test case for multi-modal image-to-image tests. (a): T1w moving image; (b): T2w target image; (c): T1w-T1w LDDMM optimization (L0) result; (d)-(f): deformation prediction+correction (LPC) result using (d) T1w-T1w data; (e) T1w-T2w data; (f) T1w-T2w data; (f) T1w-T2w data; (g) T1w-T2w data; (f) T1w-