Quicksilver: fast deep learning registration Yang et al, Neuroimage 2017

Jan Kybic

2020

Key features

 \blacktriangleright Deep learning-based

- \blacktriangleright Prediction/correction network
- ▶ Fast (11s on 1GPU for a 3D volume)
- \blacktriangleright Diffeomorphic transformation
- \blacktriangleright Large deformations (large deformation diffeomorphic metric mapping - LDDMM)
- \blacktriangleright Patch-based, patch pruning
- \blacktriangleright Uncertainty quantification
- \blacktriangleright Multimodal registration

Formulation

$$
E(\Phi) = \text{Reg}[\Phi] + \frac{1}{\sigma^2} \text{Sim}[I_0 \circ \Phi^{-1}, I_1].
$$

LDDMM is a non-parametric registration method which represents the transformation via spatio-temporal velocity fields. In particular, the sought-for mapping, Φ , is obtained via an integration of a spatio-temporal velocity field $v(x, t)$ for unit time, where t indicates time and $t \in [0, 1]$, such that $\Phi_t(x,t) = v(\Phi(x,t),t)$ and the sought-for mapping is $\Phi(x, 1)$. To single-out desirable velocity-fields, non-

$$
E(v) = \int_0^1 \|v\|_L^2 dt + \frac{1}{\sigma^2} \|M \circ \Phi^{-1}(1) - T\|^2,
$$

s.t. $\Phi_t(x, t) = v(\Phi(x, t), t), \Phi(x, 0) = id$

Differential formulation $\Phi_t^{-1} + D\Phi^{-1}v = 0$.

Classical solution

 \triangleright forward transformation - follow a particle in v. Ensures diffeomorphy

\blacktriangleright optimization

- \blacktriangleright current mismatch
- \triangleright solve (adjoint) system backward
- **In gradient of the velocity field at all** t
- \blacktriangleright update v

Shooting formulation

- \blacktriangleright find the shortest path (geodesics) between images
- ► geodesic parameterized by initial Φ^{-1} and momentum $m= Lv$
- ightharpoonup m image edges, $m(x,t) = \lambda(x,t) \nabla I(x,t)$
- \triangleright v is a smoothed momentum, $v = L^{-1}m$

Method

- redict m patch-by-patch
- \blacktriangleright train network to predict m
- In training data m found by numerical optimization
- \blacktriangleright m well predicted from patches, does not have to be smooth, zero in homogeneous regions

 \blacktriangleright large stride, drop background patches

Network structure

encoder/decoder, l_1 loss function on m (not E), 3 decoders (easier to train)

Probabilistic network

Instead of $y = f(x)$, predict $p(y|x, X, Y)$ for training data X, Y

I variational inference for network weights **W**, minimize KL divergence of $q(\mathbf{W})$ and $p(\mathbf{W}|\mathbf{X}, \mathbf{Y})$

$$
q(\mathbf{W}_i) = \mathbf{M}_i \cdot \text{diag}([z_{i,j}]_{j=1}^{K_i}), \quad z_{i,j} \sim \text{Bernoulli}(d) ,
$$

 \blacktriangleright \rightarrow dropout with probability 0.2

$$
p(\mathbf{y}'|\mathbf{x}', \mathbf{X}, \mathbf{Y}) \approx \frac{1}{T}\sum_{t=1}^T \hat{f}(\mathbf{x}', \hat{\mathbf{w}})
$$

 \blacktriangleright result=mean, variance \rightarrow uncertainty estimate

Prediction/correction

 \blacktriangleright trained sequentially

Mand $T \circ \Phi$ are in the same coordinate space, can be added

Datasets

- \blacktriangleright T1, T2 MR images
- \triangleright training *m* obtain from T1 images \rightarrow learn also multimodal T1-T2 registration

Atlas-to-image example

blue - low uncertainty

Prediction/correction experiments

Quantitative results

Target overlap

Multimodal registration

Figure 10: Example test case for multi-modal image-to-image tests. (a): T1w moving image; (b): T2w target image; (c): T1w-T1w LDDMM optimization (L0) result; (d)-(f): deformation prediction+correction (LPC) result using (d) T1w-T1w data; (e) T1w-T2w data; (f) T1w-T2w data using only 10 images as training data.