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ACNNSs

3D
encoder-decoder to represent shape
two tasks - segmentation, superresolution

aim for sub-pixel accuracy
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segmentation uses softmax + cross-entropy cost
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Results on heart ultrasound
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Segmentation & SR network
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Segmentation ACNN
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Superresolution ACNN
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Cost function

ACNN-Seg training objective tunction though a linear combi-
nation of cross-entropy (L,), shape regularisation loss (Ly,),
and weight decay terms as follows:

Li, = | Flp@):00) — F(y:05) |
A
min (Lx (¢(x: 65), ) + 41 - Ly, +72||w||%) (1

5

Here w corresponds to weights of the convolution filters,
and @, denotes all trainable parameters of the segmentation
imising the smooth £ loss, also known as Huber loss, between
the ground-truth high resolution image and the corresponding
prediction. The smooth £| norm is defined as W, (k) =
{0.5k% if |k| < 1, |k| — 0.5 otherwise} and the SR training
objective becomes mnin Z,ES Ye, ((1) (x;;0,) — y_,;)

8/13



Augmentation

» Spatial transformation
» Gaussian noise
» neighborhood label swapping
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MR heart example

ACNN=Seg

3D-Seg-MAug
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Fig. 7. (a) Cavity noise limits accurate delineation of the LV cavity in
apical areas. (b) The segmentation model can be guided through learnt
shape priors to output anatomically correct delineations. (c) Similarly,
it can make accurate predictions even when the ventricle boundaries are
occluded.
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Fig. 8. Image super-resolution (SR) results. From left to right, input
low resolution MR image, baseline SR approach [34] (no global loss),
the proposed anatomically constrained SR model, and the ground-truth
high resolution acquisition.
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Classifications

» use autoencoder values as features

» random forest to classify healthy vs. dilated and hypertrophic
cardiomyopathy patients.
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