
1 Java 8 – 17 Features

1.1 Lambdas, Streams

Cycles Simplification
How to do make simpler?

List<LocalDate> myReports = new ArrayList<>();
for (Report r : reports) {

if (r.isActive()) {
if (r.getAuthor().equals(me)) {

myReports.add(r.getDueTo());
}

}
}
Collections.sort(myReports);

Nothing wrong, business as usual. Can we do it better?

Cycles Simplification
Is this better/more readable?

List<LocalDate> myReports = reports.stream()
.filter((Report r) -> r.isActive())
.filter((Report r) -> r.getAuthor().equals(me))
.map((Report r) -> r.getDueTo())
.sorted()
.toList();

...and we can continue...

Cycles Simplification
We can remove types...

List<LocalDate> myReports = reports.stream()
.filter(r -> r.isActive())
.filter(r -> r.getAuthor().equals(me))
.map(r -> r.getDueTo())
.sorted()
.toList();

...and we can continue...

Cycles Simplification
We can use method reference...

public static boolean isMyReport(Report r) {
return r.equals(me);

}

List<LocalDate> myReports = reports.stream()
.filter(Report::isActive)
.filter(TestFunctional::isMyReport)
.map(Report::getDueTo)
.sorted()
.toList();

...Let’s compare it on the next slide!

1



Figure 1: Stream processing visualization. Source: https://www.toptal.com/
java/why-you-need-to-upgrade-to-java-8-already

Cycles Simplification

Before

List<LocalDate> myReports = new ArrayList<>();
for (Report r : reports) {

if (r.isActive()) {
if (r.getAuthor().equals(me)) {

myReports.add(r.getDueTo());
} } }
Collections.sort(myReports);

After

List<LocalDate> myReports = reports.stream()
.filter(Report::isActive)
.filter(TestFunctional::isMyReport)
.map(Report::getDueTo)
.sorted()
.toList();

Stream

Lambda for Multithreaded Application
So far it was just a syntax sugar. BUT! How easily can you write multithreaded apps?

List<LocalDate> myReports = reports.stream()
.parallel() // run on multiple threads!
.filter(RemoteVerification::isValid) // calls outsite service
.toList();

2



1.2 Optional

Optional

Before

Report r = reports.get(0);
Band header = r.getHeaderBand();
if(header!=null) {

title = header.getTitle();
if(title==null) {

title = "Default Title";
}

}

After

String title = Optional.of(reports.get(0))
.map(Report::getHeaderBand)
.map(Band::getTitle)
.orElse("Default Title");

Log4j

Before – annoying

if(log.isDebugEnabled()) {
log.debug(prepareDataForLog());

}

Simple – useless overhead if not used

log.debug(prepareDataForLog());

Functional – simple and effective

log.debug(() -> prepareDataForLog());

Couple of Usefulness

Switch Expression

switch (day) {
case MONDAY, FRIDAY, SUNDAY -> 6;
case TUESDAY -> 7;
case THURSDAY, SATURDAY -> 8;
case WEDNESDAY -> 9;
default -> throw new IllegalStateException("Invalid day: " + day);

}

Records aka Lombok

record Point(int x, int y) {}

3



...and Many Others

� Collectors.teeing,

� String.repeat(n) or Stream<String> lines()

� text block

� if(abj instanceof String str) {}

� JMH

� NullPointerException: a.b.c()

� shebang

� Vector API (Incubator)

� Foreign Function and Memory API (Incubator)

2 Agile World

Waterfall, Model V

� What’s wrong with waterfall, model V (e.g. detailed planning before programming)?
Everything!

– Detailed analysis becomes useless immediately after programming starts –
many assumptions are wrong.

– Detailed long-time planning is crazy – can you say, what you will do on
September 21st 2021 in the morning? And afternoon?

– Users tend to change their minds when they see the first version.

– Programming takes long time and situation changes.

– Studies have shown that in over 80 % of the investigated and failed soft-
ware projects, the usage of the Waterfall methodology was one of the key
factors of failure. https://www.scrum-institute.org/What_Makes_
Waterfall_Fail_in_Many_Ways.php

Agile Style of Work

� Principles (see agilemanifesto.org)

– Individuals and interactions over processes and tools

– Working software over comprehensive documentation

– Customer collaboration over contract negotiation

– Responding to change over following a plan

4



� Pair programming

� SCRUM or Canban

� Cooperation is much more important than individual success.

� Frequent and regular increments! Often are shared with customers.

2.1 Continuous Integration & Deployment

Continuous Integration

� After every commit, build is verified – including unit tests

� At least once a day, the whole product is deployed – including functional tests

� UI tests are done frequently (can take hours)

� . . . all automated.

� Quick detection of errors, cheaper fixes, fewer integration issues.

CI Tools

Version Control

� Git, others: CSV, Subversion, Bazaar, Mercurial, Bitkeeper, RTC. . .

CI Servers

� Jenkins

– Open-source, easy to setup,

– Highly configurable, lots of plugins.

� TeamCity

– Free for 3 agents and 20 build configurations,

– Developed by JetBrains,

– More suitable for enterprises – beast.

� Gitlab CI

� Today’s servers concentrate on whole process including deployment to cloud.

5



Static Code Analysis

� Analyze code structure or flows, don’t run it.

� Full-featured IDEs contain some sort of SCA.

� Checkstyle – checks just formatting.

� FindBugs – simple and pretty fast check, can find adding to String inside cycle,
impossible equals, bad null handling. . .

� Sonarqube – server-side analysis, long, discovers data flow from database to servlet
(e.g. finds XSS)

Sonarqube

2.2 12 Factor App

12 Factor App 1/2

� https://12factor.net/

� I. Codebase

– One codebase tracked in revision control, many deploys

� II. Dependencies

– Explicitly declare and isolate dependencies

� III. Config

– Store config in the environment

6



� IV. Backing services

– Treat backing services as attached resources

� V. Build, release, run

– Strictly separate build and run stages

� VI. Processes

– Execute the app as one or more stateless processes

12 Factor App 2/2

� VII. Port binding

– Export services via port binding

� VIII. Concurrency

– Scale out via the process model

� IX. Disposability

– Maximize robustness with fast startup and graceful shutdown

� X. Dev/prod parity

– Keep development, staging, and production as similar as possible

� XI. Logs

– Treat logs as event streams

� XII. Admin processes

– Run admin/management tasks as one-off processes

3 Application Monitoring and Administration

3.1 JMX

Java Management Extensions (JMX)

� Allow management of resources in an application,

� Standard part of the Java platform,

� Resources represented by Managed Beans (MBeans), registered in an MBean server,

� Accessible via JMX connectors.

Managed Beans

� Operations (MBean methods), through which the application can be managed,

� Attributes (getters/setters) for information/configuration.

7



Application Management via JMX

� Connect to application with JConsole,

� Locate the desired MBean,

– Invoke managed operations,

– View/configure attributes,

� MBean server set up in Spring – @EnableMBeanExport.

More Tools

JDK

� jmap – memory-related statistics about a VM, obsolete,

� jcmd – send diagnostic commands to JVM, internally used by the GUI tools,

� jstat – monitors JVM statistics, lots of options.

� Eclipse MAT – advanced memory analyzer,

� Java Mission Control and Java Flight Recorder – commercial JVM monitor-
ing tools by Oracle,

� StageMonitor, MoSKito etc. – open source alternatives.

� CA Wily – very famous and very detailed monitoring of JavaEE

8



4 Database Versioning

Database Versioning

� JPA provides a possibility to create missing tables

� . . . useless when table is changed

� Libraries: Liquibase and Flyway

� A list of changes is recorded, keeps current database version

� Application keeps steps to upgrade from one version to the next

� The most reliable way

� Alternatives: direct upgrades from older version (leads to multiple ways – hard
testing), creating SQL scripts (customers tend to make mistakes during deployment,
problematic error handling)

� Example of bad database upgrade: https://docs.gitlab.com/ee/update/
\#upgrade-paths

� Martin Fowler: Evolutionary Database Design

5 Production

Production Environments

� As usual – supported servers inside client’s network (Payara, Glassfish, TomEE,
WildFly, WebSphere)

� Hosted – our servers in server houses

� Currently investigating – Clouds, Docker

– Problem with acceptance in banks

– Cloud requires multitenancy application, e.g. there is a big risk of information
leak, very rare

– Docker seem a good choice, pack of all required software, needs just CPU,
memory, disk space, TCP/IP ports.

9



What We Actually Use

� Versioning: git, gitlab

� CI: Jenkins, investigating Gitlab CI

� Code analyzis: Findbugs

� IDE: NetBeans :-), Idea (In fact, this doesn’t matter.)

� Servers: Payara, TomEE, less Glassfish, WebSphere, WildFly

� Databases: PostgreSQL, MSSQL, Oracle

� Monitoring: JavaMelody

� OS: our systems – Linux, clients often Windows, recently Docker

The End

Thank You Petr Aubrecht petr@aubrecht.net

Resources

� R. Urma, M. Fusco and A. Mycroft: Java 8 in Action

� http://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.
html

� https://martinfowler.com/articles/continuousIntegration.html

� https://www.martinfowler.com/articles/evodb.html

� http://docs.oracle.com/javase/tutorial/jmx/mbeans/index.html

� http://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.
html

� https://github.com/javamelody/javamelody/wiki

10


