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Outline

= Visibility in graphics MPG — chapter 11
= Depth Buffer

= Ray Casting

= Painter’s algorithm

= BSP Trees

= Warnock'’s Algorithm

= Specialized Visibility Algorithms
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Visibility - Introduction

= Points A,B visible & line segment AB does not intersect

opaque object

= Example: visibility from a view point

view point

visible

_invisible

D

(4)



Visibility in Computer Graphics

= Hidden surface removal
= Shadows

= Radiosity

= Ray Tracing

= Visibility culling

= Games / Multi-User Environments
= Streaming
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Hidden surface removal

= Creating “correct” 2D image of 3D scene
- Finding visible objects and their visible parts
- Eliminating invisible objects and invisible parts

OFF
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Visibility algorithms

= Raster algorithms (image space)

- Solve visibility for pixels
- For each pixel Complexity: O(P.N)

- Find nearest object projected to pixel
- Shade the pixel using object color

- Algorithms: z-buffer, ray casting, painters alg. _
P .. #pixels

= Vector algorithms (object space) N .. #objects
- Vector based description of visibility

- For each object
- Find object parts not hidden by others Com plexity: O(NZ)

- Draw visible/invisible parts
- Algorithms: Naylor, Weiler-Atherton, Roberts
- CAD systems, technical drawings, special applications
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Depth buffer (Z-buffer)

=  Ed Catmull — 1975

- Co-founder and president of Pixar
= Wolfgand Strasser - 1975

= For each pixel depth of the nearest object

= Process objects in arbitrary order

1. Rasterize to fragments

2. Compare depth of each fragment with z-bufer content
3. If closer overwrite z-buffer and pixel color
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Depth buffer — pseudocode

= Two arrays: z_buffer, color_buffer

Clear color_buffer;
Set z-buffer to “infinity”;

for (each object) {
for (each object pixel P[x,y]) {
if (z-buffer[x,y] > P[x,y].depth) {
z_buffer[x,y] = P[x,y]. depth;
color_buffer[x,y] = P[x,y].color;

}
}

}
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Depth buffer - details

= Computing pixel depth - interpolation
= Linear interpolation of z” ~ 1/z (z” - device coordinates)

= For perspective projection depth resolution is hon-uniform
- Nearer objects have higher depth resolution

world space NDC

= z-fighting when rendering farther objects
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Perspective projection - OpenGL

glFrustum(left,right,bottom,top,near,far)

top

ar

y ft| +fear

ottom

X
Z

ri

s

view/camera/eye coordinates

2near

right — left

[1,1,1]

N

[—1,—1,—1]

clip coordinates / NDC

right + left

right — left 0
2near top + bottom
top — bottom top — bottom 0
near + far 2 far near
0 near — far  near — far
0 -1 0
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Perspective projection

2near right + left
right — left 0 right — left 0
2near top + bottom
M = top — bottom top — bottom 0
near + far 2 far near
0 0 near — far  near — far
0 0 -1 0

, _ 2near x right+left
X T eft - rightz right — left

, _near + far = 2 far near 1

7z =
far —near far —nearz
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Depth Precision Issues - Example

near 2 far
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source: https://developer.nvidia.com/content/depth-precision-visualized



Depth distributions in z-buffer

= Careful setting of near-far planes
- near=1 /far=10:50% between 1.0a 1.8
- near=0.01/far=10:90% between 0.01 - 0.1
- Median = 2*near*far/(near + far)
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Resolving Z-fighting

Careful settings of near(!) and far planes

Rendering close and far objects
- Several passes, updating near/far
- Combine using stencil

W-buffer

- Stores eye space z, linear depth distribution
- Reciprocal of z;' for each pixel

Reverse z
- Lapidous and Jiao. Optimal depth buffer for low-cost graphics hardware. HWWS "99.
- https://developer.nvidia.com/content/depth-precision-visualized
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Reverse Z

= Use 1-Z' and floating point(!) depth buffer

{ = Reverse depth test (higher z is closer)
1 . = Floats have higher resolution towards O
p 1/
o -
I T S B B B s e ey ey ey ey ey L

near 2 far
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Perspectively correct interpolation

LERP In screen space
non linear in object space
(hyperbola) !
Solution for color -5

Compute ¢'=c/z and Zz’' = 1/z
LERP of ¢’ and Z’
For each pixel ¢, = ¢;/z;
The same for texture coordinates u, v (!)
Note: OpenGL stores 1/z in w' component after persp. divide
Compute w’ = 1/z and c’=c*wW’
LERP of ¢’ and w’
For each pixel ¢; = ¢;'/w;




Depth buffer - properties

= Benefits
- Simplicity
- No preprocessing or sorting
- Easy parallelization and HW implementation

= |ssues
- Pixel overdraw
- Mapping depth to z-buffer bit range
- Transparent objects
- Alias

(19)
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Quiz — number of overdraws

= 10 polygons project to pixel in random order
= What is the average number of overdraws?

b) 5.5

Source: Eric Haines - Subtle Tools
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Intuitive answer

= Front-to-back 1x, back-to-front 10x
= So the average is 5.5 overdraws
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Correct answer

The first polygon must cause overdraw: 1

The second is either back or front

Chance of overdraw: %2

Third polygon

1/3 chance that it is the closest and causes overdraw

Harmonic series: 1 +1/2+1/3+ ... + 1/10 = 2.9289

1 poly 1x

4 polys 2.08x
11 polys 3.02x
31 polys 4.03x
83 polys 5.00x
12,367 polys | 10.00x

Aproximation for big N
overdraw(N) = In(N) + 0.57721



Depth buffer in image pipeline

Transformation

Clipping

v

Projection

L

Rasterization + Visibility l—»

Shading
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Depth buffer in OpenGL

= glutlnitDisplayMode (... | GLUT_DEPTH | ... );

glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
glClear(GL_DEPTH_BUFFER_BIT);

glDepthMask(mask);
- GL_TRUE read/write
- GL_FALSE read only
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Depth buffer and transparent objects

Draw all non-transparent objects using z-buffer
Sort all transparent objects back-to-front

Render transparent objects with alfa-blending

- OpenGL:
- gIDepthMask(GL_FALSE);
- giBlendFunc(gl.ONE, gl.ONE_MINUS_SRC_ALPHA);
- glEnable(GL_BLEND);

Depth peeling

- Iterative rendering layer by layer

- Additional depth check: if z(current_layer) >= z(prev_layer) -> cull
- Use “shadow test + alpha test” (Everitt 2001)
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Alpha blending — Over & Under operator

“ C=(rg ba) ) d

" a opacity
- a = 0 transparent
- a = 1 opaque

C'yg=a,Cs+ (1 —a;)Cy s overd

Ccli = Q’S(l — ad)CS ~+ adCd S Under d
a; =a;(1—ay) + ay
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Depth buffer — Questions

Should we draw back to front or front to back?
How to increase depth resolution?

When to perform the depth test?
How to handle transparent objects?
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Ray casting

= Cast ray for each image pixel [Appel68]
= Find the nearest intersection with scene objec

= Complexity
- Naive: O(R.N)
- With spatial data structure: O(R.log N)
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Accelerated ray casting

= Step 1. construct spatial DS

- Preprocessing
- BVH, kD-tree, octree, 3D grid

= Step 2: find the nearest
Intersection

- Walk through cells intersected
by the ray

- Intersection found: terminate

viewport
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Ray Casting — Generating (Primary) Rays

= |Implicit camera parameters
- MVP matrix inversion

= Explicit knowledge of camera parameters
- position (0), view direction (v), up vector (u), view angle (0) -

1. Compute view coordinate system: a, s, t

2. Ray through pixel x, y (image size width x height):
ray_origin = o;

ray_dir = Normalize(a + x/width*s + y/height*t — 0);




Ray casting - properties

= Benefits
- Flexibility (adaptive raster, ray tracing)
- Efficient culling of occluded objects

= Drawbacks
- Lower use of coherence
- Requires spatial DS
- Issue for dynamic scenes and HW implementation

(32)



Z-buffer vs. Ray Casting

Scan-line Requires Efficient handling of
coherence preprocessing occluded objects
Z-buffer yes + no + no -
Ray casting no - yes - yes +

Z-buffer better for dynamic scenes with low occlusion

Ray casting better for complex highly occluded scenes

(33)




Z-buffer GPU optimizations

= Z-cull
- ZminZmax fOr 8X8 pixel blocks
- If tri ., > tile,,,, discard

= Early-z test (for each pixel)
- Apply z-test before shader execution
- On newer GPUs used by default
- Switched off when modifying “z” in shader

= HW occlusion queries, conditional rendering
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Painter’s algorithm

Rendering back to front
Farther patches overwritten by closer ones
Used in 2D drawing tools (layers)

In 3D without explicit ordering more complicated
Depth sort algorithm [Newell72]
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Depth Sort Painter’s algorithm

= Sort patches using zmax of each patch
= Farthest patch = candidate for rendering (P1)
= Series of tests to confirm the candidate using remaining patches

(37)



Depth Sort Painter’s algorithm — cont.

1. depth S L o z 2. Xy-projection
overlap Z1rmin \ ., overlap
1 P2
Z2max 4 = = = = |
Z2min |~ -/P‘Z ./! N
no overlap —render P1 projection plane xy  projection plane xy ngivpe;t'gﬁ -
z| ™o Z 3
3. P2 before P1 N\ P1 Q -7 _
> ~_~ 4.P1behind P2
S -
YES — next patch —— Z — YES — next patch
projection plane xy projection plane xy

Tests failed: swap (P2 = new candidate)
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Cycle of candidates

Can be detected using counter for candidate
Solved by cutting the patch

'
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Painter’s algorithm - properties

= Benefits
- No depth buffer needed
- Simplified version: easy implementation

= |ssues
- Overdraw
- Correct depth order
- Self intersections of patches not allowed

(40)
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Binary Space Partitioning (BSP)

= View independent sorting of the scene [Fuchs80]

= Two phases
- BSP tree construction (1x)
- Tree traversal and rendering (as painter’s alg.)
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BSP Tree Construction

= Recursive splitting by planes
= Planes typically defined using scene polygons (autopartition)
= Other planes can be used as well (e.g. axis-aligned)!




Rendering with BSP tree

void RenderBSP (Node S)

If (camera in front of S.plane) {
RenderBSP (S.back);
Render(S.polygons);
RenderBSP (S.front);

}

else {

RenderBSP (S.front);
Render(S.polygons);
RenderBSP (S.back);

(44)




BSP tree and Z-buffer

= Reduce number of overdraws

= Traverse front-to-back (reverse order compared to painter’s alg.)

= Alternatives to BSP tree
- kD tree, octree, BVH

(45)
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Image Subdivision — Warnock's alg.

= Recursive fast rectangle clipping tests
= Recursion terminates in pixel /subpixel

Divide and Conquer [Warnock69]
1. No object: background color
2. One object: render

3. More objects, one closest
and fully covers:
render closest

4. Recursively subdivide
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Back-face Culling

= Eliminates ~ 50% polygons d

camera
= |fd*n>0: cull

= In NDC: just check for sign of n,,
- n, = eyey —efe;

- Computed from transformed vertices (not shading normal)

= OpenGL:
glFrontFace(GL_CCW);
glCullFace(GL_FRONT);
glEnable(GL_CULL_FACE);
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Direct rendering of CSG models

= Specialized ray casting
= Intervals of ray/object intersections

= Solving set operations = set operations on intervals

A
B
c Q---.---{.- -=4.
viewport | i i i |
A : | | |
B: T
C=AB — |

fﬂJ
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Floating horizon algorithm

= Graphs of functions z = (X,y)
= Terrains (height field )

= Algorithm outline
- Render front-to-back
- Keep bottom and top horizon

top horizon New drawing
cutrp \

cutrs

cutr
bottom horizor/
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A-Buffer

Antialiasing, correct transparency
[Carpenter84], Lucasfilm: “The Road To Point Reyes”
Later used in RenderMan (Pixar)

Ordered list of primitives for each pixel

Storing not just depth
transparency, coverage, object ID, normal,...

Polygon rasterization
Non-transparent polygon covers the whole pixel — add to list and remove farther ones
Transparent polygon or partial pixel coverage — insert to list, do not remove farther ones



A-Buffer

* Rendering pass
- For each pixel process the list front-to-back

- Composition (subpixel rasterization, coverage mask 4x4 or 4x8)

- Similar to MSAA
(shading once, visibility multiple times) F
= Benefits
- More general than z-buffer fﬁg?_g“pt
- Handles transparency Short ot
- Antialiasing pixelmask

- Used in production rendering

+

next;

I, g b;
opacity;
area;
object_tag;
m;

zmax, zmin;

/* color, 12 bit */

/* 1 - transparency */

/* 12 bit precision */

/* from parent surface x/
/* 4x8 bits */

/* positive */

Figure 3. Fragment definition.

Loren Carpenter. 1984. The A -buffer, an antialiased hidden surface method. SIGGRAPH '84.

(54)



Other buffers...

A-buffer - Carpenter, 1984

G-buffer - Saito & Takahashi, 1991
M-buffer - Schneider & Rossignac, 1995
P-buffer - Yuan & Sun, 1997

T-buffer - Hsiung, Thibadeau & Wu, 1990
W-buffer - 3dfx, 19967

Z-buffer - Catmull, 1973 (?)

ZZ-buffer - Salesin & Stolfi, 1989

Accumulation Buffer - Haeberli & Akeley, 1990
Area Sampling Buffer - Sung, 1992

Back Buffer - Baum, Cohen, Wallace & Greenberg,
1986

Close Objects Buffer - Telea & van Overveld, 1997
Color Buffer

Compositing Buffer - Lau & Wiseman, 1994

Cross Scan Buffer - Tanaka & Takahashi, 1994
Delta Z Buffer - Yamamoto, 1991

Depth Buffer - 1984

Depth-Interval Buffer - Rossignac & Wu, 1989
Double Buffer - 1993

Escape Buffer - Hepting & Hart, 1995

Frame Buffer - Kajiya, Sutherland & Cheadle, 1975
Hierarchical Z-Buffer - Greene, 1993

Item Buffer - Weghorst, Hooper & Greenberg, 1984
Light Buffer - Haines & Greenberg, 1986
Mesh Buffer - Deering, 1995

Normal Buffer - Curington, 1985

Picture Buffer - Ollis & Borgwardt, 1988

Pixel Buffer - Peachey, 1987

Ray Distribution Buffer - Shinya, 1994
Ray-Z-Buffer - Lamparter, Muller & Winckler,
1990

Refreshing Buffer - Basil, 1977

Sample Buffer - Ke & Change, 1993

Shadow Buffer - GIMP, 1999

Sheet Buffer - Mueller & Crawfis, 1998
Stencil Buffer - 19977

Super Buffer - Gharachorloo & Pottle, 1985
Super-Plane Buffer - Zhou & Peng, 1992
Triple Buffer

Video Buffer - Scherson & Punte, 1987
Volume Buffer - Sramek & Kaufman, 1999

Source: Eric Haines - Is the Hardware Z-Buffer Doomed?

(55)



Outline

= Visibility in graphics MPG — chapter 11
= Depth Buffer

= Ray Casting

= Painter’s algorithm

= BSP Trees

= Warnock'’s Algorithm

= Specialized Visibility Algorithms

(56)



KATEDRA POCITACOVE GRAFIKY A INTERAKCE

Questions?

+ 4+

+

+ + + + o+ + + + +

+ + + + + + o+ + o+

+ + + o+

+ + + + + + + + + + + + 4

+

+ + +

+ + 4+ + + + + + + + + + +

+ + + +

+ + + + + + 4+ 4+ 4+ + 4+ + + + + + + + + + +

+ + 4+ 4+ 4+ + + + 4+ 4+ + + + + + + + + o+

+ + + +

-+

-+

+ + 4+ + + + + + 4+ + + + + + + + + + + + +

+ + +

+

T+ 4+ +  +H O+ O+ F O OF O OFEF O OEF OHF O OF YT OHF OOYF OYF OO OOF O OYOEFOYFICOCF OFIOCEOYEISITE O*FOQPYE OO+



