KATEDRA POCITACOVE GRAFIKY A INTERAKCE

ility Algorithms

1SI

V

Bittner

N m—

bl

J

+ + + + + +

+ +

+ 4+ + + + + + o+ o+

-+

+ + + + + + + + + + + + 4

+ + 4+ + + 4+ + o+ o+

+ + o+ o+

+ + + + + + 4+ 4+ 4+ + 4+ + + + + + + + + + +

+ + 4+ 4+ 4+ 4+ + + 4+ + + + + + + + o+ o+

-+

+ + + +

+ + 4+ + + + + + 4+ + + + + + + + + + + + +

+

+ +

+ 4+ + + + F F F F F F F O O F FrF O FEF O OF OF OUROE OF OFIOEF OEOOEXOH

Outline

= Visibility in graphics MPG — chapter 11
= Depth Buffer

= Ray Casting

= Painter’s algorithm

= BSP Trees

= Warnock'’s Algorithm

= Specialized Visibility Algorithms

(2)

Visibility - Introduction

= Points A,B visible & line segment AB does not intersect

opaque object

= Example: visibility from a view point

view point

visible

_invisible

D

(4)

Visibility in Computer Graphics

= Hidden surface removal
= Shadows

= Radiosity

= Ray Tracing

= Visibility culling

= Games / Multi-User Environments
= Streaming

(5)

Hidden surface removal

= Creating “correct” 2D image of 3D scene
- Finding visible objects and their visible parts
- Eliminating invisible objects and invisible parts

OFF

©)

Visibility algorithms

= Raster algorithms (image space)

- Solve visibility for pixels
- For each pixel Complexity: O(P.N)

- Find nearest object projected to pixel
- Shade the pixel using object color

- Algorithms: z-buffer, ray casting, painters alg. _
P .. #pixels

= Vector algorithms (object space) N .. #objects
- Vector based description of visibility

- For each object
- Find object parts not hidden by others Com plexity: O(NZ)

- Draw visible/invisible parts
- Algorithms: Naylor, Weiler-Atherton, Roberts
- CAD systems, technical drawings, special applications

@)

Outline

= Visibility in graphics MPG — chapter 11
= Depth Buffer

= Ray Casting

= Painter’s algorithm

= BSP Trees

= Warnock'’s Algorithm

= Specialized Visibility Algorithms

(8)

Depth buffer (Z-buffer)

= Ed Catmull — 1975

- Co-founder and president of Pixar
= Wolfgand Strasser - 1975

= For each pixel depth of the nearest object

= Process objects in arbitrary order

1. Rasterize to fragments

2. Compare depth of each fragment with z-bufer content
3. If closer overwrite z-buffer and pixel color

———_\
-\

©)

Depth buffer — pseudocode

= Two arrays: z_buffer, color_buffer

Clear color_buffer;
Set z-buffer to “infinity”;

for (each object) {
for (each object pixel P[x,y]) {
if (z-buffer[x,y] > P[x,y].depth) {
z_buffer[x,y] = P[x,y]. depth;
color_buffer[x,y] = P[x,y].color;

}
}

}

(10)

Depth buffer - details

= Computing pixel depth - interpolation
= Linear interpolation of z” ~ 1/z (z” - device coordinates)

= For perspective projection depth resolution is hon-uniform
- Nearer objects have higher depth resolution

world space NDC

= z-fighting when rendering farther objects

(11)

Perspective projection - OpenGL

glFrustum(left,right,bottom,top,near,far)

top

ar

y ft| +fear

ottom

X
Z

ri

s

view/camera/eye coordinates

2near

right — left

[1,1,1]

N

[—1,—1,—1]

clip coordinates / NDC

right + left

right — left 0
2near top + bottom
top — bottom top — bottom 0
near + far 2 far near
0 near — far near — far
0 -1 0

(12)

Perspective projection

2near right + left
right — left 0 right — left 0
2near top + bottom
M = top — bottom top — bottom 0
near + far 2 far near
0 0 near — far near — far
0 0 -1 0

, _ 2near x right+left
X T eft - rightz right — left

, _near + far = 2 far near 1

7z =
far —near far —nearz

(13)

Depth Precision Issues - Example

near 2 far

14
source: https://developer.nvidia.com/content/depth-precision-visualized

Depth distributions in z-buffer

= Careful setting of near-far planes
- near=1 /far=10:50% between 1.0a 1.8
- near=0.01/far=10:90% between 0.01 - 0.1
- Median = 2*near*far/(near + far)

wi ndowr £

1

08

o5 |
o4 H
i

i
0z H

a1

(15)

Resolving Z-fighting

Careful settings of near(!) and far planes

Rendering close and far objects
- Several passes, updating near/far
- Combine using stencil

W-buffer

- Stores eye space z, linear depth distribution
- Reciprocal of z;' for each pixel

Reverse z
- Lapidous and Jiao. Optimal depth buffer for low-cost graphics hardware. HWWS "99.
- https://developer.nvidia.com/content/depth-precision-visualized

(16)

Reverse Z

= Use 1-Z' and floating point(!) depth buffer

{ = Reverse depth test (higher z is closer)
1 . = Floats have higher resolution towards O
p 1/
o -
I T S B B B s e ey ey ey ey ey L

near 2 far

17
source: https://developer.nvidia.com/content/depth-precision-visualized

Perspectively correct interpolation

LERP In screen space
non linear in object space
(hyperbola) !
Solution for color -5

Compute ¢'=c/z and Zz’' = 1/z
LERP of ¢’ and Z’
For each pixel ¢, = ¢;/z;
The same for texture coordinates u, v (!)
Note: OpenGL stores 1/z in w' component after persp. divide
Compute w’ = 1/z and c’=c*wW’
LERP of ¢’ and w’
For each pixel ¢; = ¢;'/w;

Depth buffer - properties

= Benefits
- Simplicity
- No preprocessing or sorting
- Easy parallelization and HW implementation

= |ssues
- Pixel overdraw
- Mapping depth to z-buffer bit range
- Transparent objects
- Alias

(19)

19

Quiz — number of overdraws

= 10 polygons project to pixel in random order
= What is the average number of overdraws?

b) 5.5

Source: Eric Haines - Subtle Tools

(20

Intuitive answer

= Front-to-back 1x, back-to-front 10x
= So the average is 5.5 overdraws

(21)

Correct answer

The first polygon must cause overdraw: 1

The second is either back or front

Chance of overdraw: %2

Third polygon

1/3 chance that it is the closest and causes overdraw

Harmonic series: 1 +1/2+1/3+ ... + 1/10 = 2.9289

1 poly 1x

4 polys 2.08x
11 polys 3.02x
31 polys 4.03x
83 polys 5.00x
12,367 polys | 10.00x

Aproximation for big N
overdraw(N) = In(N) + 0.57721

Depth buffer in image pipeline

Transformation

Clipping

v

Projection

L

Rasterization + Visibility l—»

Shading

(23)

Depth buffer in OpenGL

= glutlnitDisplayMode (... | GLUT_DEPTH | ...);

glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
glClear(GL_DEPTH_BUFFER_BIT);

glDepthMask(mask);
- GL_TRUE read/write
- GL_FALSE read only

(24)

Depth buffer and transparent objects

Draw all non-transparent objects using z-buffer
Sort all transparent objects back-to-front

Render transparent objects with alfa-blending

- OpenGL:
- gIDepthMask(GL_FALSE);
- giBlendFunc(gl.ONE, gl.ONE_MINUS_SRC_ALPHA);
- glEnable(GL_BLEND);

Depth peeling

- Iterative rendering layer by layer

- Additional depth check: if z(current_layer) >= z(prev_layer) -> cull
- Use “shadow test + alpha test” (Everitt 2001)

(25)

Alpha blending — Over & Under operator

“ C=(rg ba)) d

" a opacity
- a = 0 transparent
- a = 1 opaque

C'yg=a,Cs+ (1 —a;)Cy s overd

Ccli = Q’S(l — ad)CS ~+ adCd S Under d
a; =a;(1—ay) + ay

(26)

Depth buffer — Questions

Should we draw back to front or front to back?
How to increase depth resolution?

When to perform the depth test?
How to handle transparent objects?

(27)

Outline

= Visibility in graphics MPG — chapter 11
* Depth Buffer

= Ray Casting

= Painter’s algorithm

= BSP Trees

= Warnock'’s Algorithm

= Specialized Visibility Algorithms

(28)

Ray casting

= Cast ray for each image pixel [Appel68]
= Find the nearest intersection with scene objec

= Complexity
- Naive: O(R.N)
- With spatial data structure: O(R.log N)

(29)

Accelerated ray casting

= Step 1. construct spatial DS

- Preprocessing
- BVH, kD-tree, octree, 3D grid

= Step 2: find the nearest
Intersection

- Walk through cells intersected
by the ray

- Intersection found: terminate

viewport

(30)

Ray Casting — Generating (Primary) Rays

= |Implicit camera parameters
- MVP matrix inversion

= Explicit knowledge of camera parameters
- position (0), view direction (v), up vector (u), view angle (0) -

1. Compute view coordinate system: a, s, t

2. Ray through pixel x, y (image size width x height):
ray_origin = o;

ray_dir = Normalize(a + x/width*s + y/height*t — 0);

Ray casting - properties

= Benefits
- Flexibility (adaptive raster, ray tracing)
- Efficient culling of occluded objects

= Drawbacks
- Lower use of coherence
- Requires spatial DS
- Issue for dynamic scenes and HW implementation

(32)

Z-buffer vs. Ray Casting

Scan-line Requires Efficient handling of
coherence preprocessing occluded objects
Z-buffer yes + no + no -
Ray casting no - yes - yes +

Z-buffer better for dynamic scenes with low occlusion

Ray casting better for complex highly occluded scenes

(33)

Z-buffer GPU optimizations

= Z-cull
- ZminZmax fOr 8X8 pixel blocks
- If tri ., > tile,,,, discard

= Early-z test (for each pixel)
- Apply z-test before shader execution
- On newer GPUs used by default
- Switched off when modifying “z” in shader

= HW occlusion queries, conditional rendering

(34)

Outline

= Visibility in graphics MPG — chapter 11
* Depth Buffer

» Ray Casting

= Painter’s algorithm

= BSP Trees

= Warnock'’s Algorithm

= Specialized Visibility Algorithms

(35)

Painter’s algorithm

Rendering back to front
Farther patches overwritten by closer ones
Used in 2D drawing tools (layers)

In 3D without explicit ordering more complicated
Depth sort algorithm [Newell72]

(36)

Depth Sort Painter’s algorithm

= Sort patches using zmax of each patch
= Farthest patch = candidate for rendering (P1)
= Series of tests to confirm the candidate using remaining patches

(37)

Depth Sort Painter’s algorithm — cont.

1. depth S L o z 2. Xy-projection
overlap Z1rmin \ ., overlap
1 P2
Z2max 4 = = = = |
Z2min |~ -/P‘Z ./! N
no overlap —render P1 projection plane xy projection plane xy ngivpe;t'gﬁ -
z| ™o Z 3
3. P2 before P1 N\ P1 Q -7 _
> ~_~ 4.P1behind P2
S -
YES — next patch —— Z — YES — next patch
projection plane xy projection plane xy

Tests failed: swap (P2 = new candidate)

38

Cycle of candidates

Can be detected using counter for candidate
Solved by cutting the patch

'

/. \

Painter’s algorithm - properties

= Benefits
- No depth buffer needed
- Simplified version: easy implementation

= |ssues
- Overdraw
- Correct depth order
- Self intersections of patches not allowed

(40)

Outline

= Visibility in graphics MPG — chapter 11
* Depth Buffer

» Ray Casting

» Painter’s algorithm

= BSP Trees

= Warnock'’s Algorithm

= Specialized Visibility Algorithms

(41)

Binary Space Partitioning (BSP)

= View independent sorting of the scene [Fuchs80]

= Two phases
- BSP tree construction (1x)
- Tree traversal and rendering (as painter’s alg.)

(42)

BSP Tree Construction

= Recursive splitting by planes
= Planes typically defined using scene polygons (autopartition)
= Other planes can be used as well (e.g. axis-aligned)!

Rendering with BSP tree

void RenderBSP (Node S)

If (camera in front of S.plane) {
RenderBSP (S.back);
Render(S.polygons);
RenderBSP (S.front);

}

else {

RenderBSP (S.front);
Render(S.polygons);
RenderBSP (S.back);

(44)

BSP tree and Z-buffer

= Reduce number of overdraws

= Traverse front-to-back (reverse order compared to painter’s alg.)

= Alternatives to BSP tree
- kD tree, octree, BVH

(45)

Outline

= Visibility in graphics MPG — chapter 11
* Depth Buffer

» Ray Casting

» Painter’s algorithm

= BSP Trees

= Warnock's Algorithm

= Specialized Visibility Algorithms

(46)

Image Subdivision — Warnock's alg.

= Recursive fast rectangle clipping tests
= Recursion terminates in pixel /subpixel

Divide and Conquer [Warnock69]
1. No object: background color
2. One object: render

3. More objects, one closest
and fully covers:
render closest

4. Recursively subdivide

(47)

Outline

= Visibility in graphics MPG — chapter 11
* Depth Buffer

» Ray Casting

» Painter’s algorithm

= BSP Trees

= Warnock’s Algorithm

= Specialized Visibility Algorithms

C)

Back-face Culling

= Eliminates ~ 50% polygons d

camera
= |fd*n>0: cull

= In NDC: just check for sign of n,,
- n, = eyey —efe;

- Computed from transformed vertices (not shading normal)

= OpenGL:
glFrontFace(GL_CCW);
glCullFace(GL_FRONT);
glEnable(GL_CULL_FACE);

(50)

Direct rendering of CSG models

= Specialized ray casting
= Intervals of ray/object intersections

= Solving set operations = set operations on intervals

A
B
c Q---.---{.- -=4.
viewport | i i i |
A : | | |
B: T
C=AB — |

fﬂJ
[

Floating horizon algorithm

= Graphs of functions z = (X,y)
= Terrains (height field)

= Algorithm outline
- Render front-to-back
- Keep bottom and top horizon

top horizon New drawing
cutrp \

cutrs

cutr
bottom horizor/

(52)

A-Buffer

Antialiasing, correct transparency
[Carpenter84], Lucasfilm: “The Road To Point Reyes”
Later used in RenderMan (Pixar)

Ordered list of primitives for each pixel

Storing not just depth
transparency, coverage, object ID, normal,...

Polygon rasterization
Non-transparent polygon covers the whole pixel — add to list and remove farther ones
Transparent polygon or partial pixel coverage — insert to list, do not remove farther ones

A-Buffer

* Rendering pass
- For each pixel process the list front-to-back

- Composition (subpixel rasterization, coverage mask 4x4 or 4x8)

- Similar to MSAA
(shading once, visibility multiple times) F
= Benefits
- More general than z-buffer fﬁg?_g“pt
- Handles transparency Short ot
- Antialiasing pixelmask

- Used in production rendering

+

next;

I, g b;
opacity;
area;
object_tag;
m;

zmax, zmin;

/* color, 12 bit */

/* 1 - transparency */

/* 12 bit precision */

/* from parent surface x/
/* 4x8 bits */

/* positive */

Figure 3. Fragment definition.

Loren Carpenter. 1984. The A -buffer, an antialiased hidden surface method. SIGGRAPH '84.

(54)

Other buffers...

A-buffer - Carpenter, 1984

G-buffer - Saito & Takahashi, 1991
M-buffer - Schneider & Rossignac, 1995
P-buffer - Yuan & Sun, 1997

T-buffer - Hsiung, Thibadeau & Wu, 1990
W-buffer - 3dfx, 19967

Z-buffer - Catmull, 1973 (?)

ZZ-buffer - Salesin & Stolfi, 1989

Accumulation Buffer - Haeberli & Akeley, 1990
Area Sampling Buffer - Sung, 1992

Back Buffer - Baum, Cohen, Wallace & Greenberg,
1986

Close Objects Buffer - Telea & van Overveld, 1997
Color Buffer

Compositing Buffer - Lau & Wiseman, 1994

Cross Scan Buffer - Tanaka & Takahashi, 1994
Delta Z Buffer - Yamamoto, 1991

Depth Buffer - 1984

Depth-Interval Buffer - Rossignac & Wu, 1989
Double Buffer - 1993

Escape Buffer - Hepting & Hart, 1995

Frame Buffer - Kajiya, Sutherland & Cheadle, 1975
Hierarchical Z-Buffer - Greene, 1993

Item Buffer - Weghorst, Hooper & Greenberg, 1984
Light Buffer - Haines & Greenberg, 1986
Mesh Buffer - Deering, 1995

Normal Buffer - Curington, 1985

Picture Buffer - Ollis & Borgwardt, 1988

Pixel Buffer - Peachey, 1987

Ray Distribution Buffer - Shinya, 1994
Ray-Z-Buffer - Lamparter, Muller & Winckler,
1990

Refreshing Buffer - Basil, 1977

Sample Buffer - Ke & Change, 1993

Shadow Buffer - GIMP, 1999

Sheet Buffer - Mueller & Crawfis, 1998
Stencil Buffer - 19977

Super Buffer - Gharachorloo & Pottle, 1985
Super-Plane Buffer - Zhou & Peng, 1992
Triple Buffer

Video Buffer - Scherson & Punte, 1987
Volume Buffer - Sramek & Kaufman, 1999

Source: Eric Haines - Is the Hardware Z-Buffer Doomed?

(55)

Outline

= Visibility in graphics MPG — chapter 11
= Depth Buffer

= Ray Casting

= Painter’s algorithm

= BSP Trees

= Warnock'’s Algorithm

= Specialized Visibility Algorithms

(56)

KATEDRA POCITACOVE GRAFIKY A INTERAKCE

Questions?

+ 4+

+

+ + + + o+ + + + +

+ + + + + + o+ + o+

+ + + o+

+ + + + + + + + + + + + 4

+

+ + +

+ + 4+ + + + + + + + + + +

+ + + +

+ + + + + + 4+ 4+ 4+ + 4+ + + + + + + + + + +

+ + 4+ 4+ 4+ + + + 4+ 4+ + + + + + + + + o+

+ + + +

-+

-+

+ + 4+ + + + + + 4+ + + + + + + + + + + + +

+ + +

+

T+ 4+ + +H O+ O+ F O OF O OFEF O OEF OHF O OF YT OHF OOYF OYF OO OOF O OYOEFOYFICOCF OFIOCEOYEISITE O*FOQPYE OO+

