$+ \pm \pm+$
$+ \pm \pm+$
$+\quad$ DCC
KATEDRA POČítAČOVÉ GRAFIKY A INTERAKCE

APG - Color JIŘí ŽÁRA

Contents

- 1) Principles of color perception, colorimetry
- Light, color, perception
- Colorimetry, comparison of colors
- 2) Color models in technical applications
- RGB, CMY(K), HSV, HLS, YUV, $\mathrm{YC}_{\mathrm{b}} \mathrm{C}_{\mathrm{r}}$
- CIE L*a*b, CIE Luv

Visible light

- EM (electro-magnetic) radiation cca 380nm 720nm
- Retina (human eye) is sensitive to

- Light is a physical phenomenon
- Physics can describe light properties and behavior [Physics <= ©) => Computer Graphics]

Color

- Perception (individual)
- No (direct) relation with physics
- Color description relates to psychology
- What is "dark blue"? "army green"? "rosy"?

Human Eye

- Light passes through lens and falls to retina (array of photoreceptor cells):
- Cone cells [čípky]
- 3 kinds responsive to three different wavelengths - L / M / S (long / medium / short wavelength) - approx. Red/ Green / Blue
- Essential for color perception
- Bright light is required
- Rod cells [tyčinky]
- Activated in low intensity of light - scotopic (night) vision
- Saturated during the day light (photopic intensity) - no signal produced
- 1 kind only - monochrome, black \& white vison => impossible to distinguish colors in dark

Luminance curve

- How we perceive intensity according to wavelength
- Purkyně shift:

- Change in the brightness of red and blue colors as light intensity decreases
- Example: Red paper looks brighter than the blue one during the day, while reversely in the dark.

APG - Color

Jan Evangelista Purkyně

* 1787, Libochovice

† 1869, Praha

- Medicine, poetry, philosophy, ...
- Idea: „Cell is the most important entity for a life" [1837, Prague]

What influences the color perception?

- A. Light Source

- Spectral radiance, $L(\lambda)$: quantity of (emitted) radiation of specific wavelength λ within a given angle in a given direction. $\left[\mathrm{W} \mathrm{sr}{ }^{-1} \mathrm{~m}^{-2} \mathrm{~Hz}^{-1}\right]\left[\mathrm{W} \mathrm{sr}^{-1} \mathrm{~m}^{-2} \mathrm{~nm}^{-1}\right]$ [záre]
- Radiance: total emission (non-spectral), $\left[\mathrm{W} \mathrm{sr}^{-1} \mathrm{~m}^{-2}\right]$
- Influences human eye adaptation
- People tend to consider light as white, even if it is not
- B. Material properties of lighted object(s)
- C. Perceptual processes in an eye and a brain

What influences the color perception?

- A. Light source
- B. Material properties of lighted object(s)
- Spectral reflectivity, reflectance $\rho(\lambda)$ [odrazivosf]

$$
L_{\text {reflected }}(\lambda)=L_{\text {incoming }}(\lambda) \rho(\lambda)
$$

- C. Perceptual processes in an eye and a brain
- Radiance $L(\lambda)$ falling in the eye (i.e. function of wavelengths) is "decoded" by brain as something like:
- Hue - dominant color [odstín]
- Saturation - how far is the color from gray of equal intensity [sytost]
- Lightness - perceived intensity of reflecting object [jas] Note: Brightness - when object is emitter

Colorimetry

- Studies human perception of colors - how spectral radiance is interpreted by humans
- (Historical) questions:
a) Are 2 different spectral radiances perceived as 2 colors?
- No! Human eye is not a perfect spectrophotometer.
b) Under which conditions 2 spectral radiances are perceived as the same color?
c) Is it possible to find „clear", basic colors (primaries) and make all visible colors by mixing these primaries?
d) If yes, how to define the intensities of primaries for a given spectral radiance, which make the same color perception?

Colorimetry

- The key is the characteristics of cones in retina:
- What are responses of S, M, L cones for a given radiance?
- Answers to previous questions:
- Ad b)
- If responses of S, M, L cones to different spectral radiances are equal then the same color is perceived.
$-\operatorname{Ad} c)+d)$
- GOOD NEWS: Since we have 3 types of cones, human perception is 3-dimensional (only!), thus we can use/mix 3 primaries to define all visible colors.
- BAD NEWS: Those primaries need to have also negative coefficients/intensities! (physically impossible)

Color matching experiment

- Colorimetry tool used in the $19^{\text {th }}$ and $20^{\text {th }}$ century:

Left:
Real color projected from projector

Right:

Three primaries (monochromatic colors) projected and overlaid (additive composition)

- Task for a human: Set the intensities of primaries on the right to reach the came color as on the left.
- Solve the "visual equation": $c_{\text {real }}=C_{R}+c_{G}+C_{B}$

Color matching experiment results

- Two primaries are not enough (as expected...)
- Three primaries are enough, but in same cases the mixed color has a lower saturation than the real color on the right:
- If red primary is added to left color, the same perception is reached.
- Instead of adding red to the left, we could subtract red from the right => mathematically we add red with negative intensity (negative coefficient \mathbf{c}_{R}) to the right.
- This stands for all possible three primaries \otimes.

Cones and Primaries

- Cone responses

- Required tri-stimulus values

Images from [Foley, van Dam, 1990]

Conclusions

- No triple of primaries (with positive coeffs.) can be found to make all visible colors.
- Each triple of primaries defines limited range/amount (gamut) of colors.
- Theoretically, having negative coeffs., it would be possible to make all colors from only three primaries.

CIE XYZ Color Model

- CIE: Commission Internationale de l'Eclairage (1931)
- Defines international standards
- Disadvantage of RGB primaries
- Composition with positive coeffs. does not make all colors
- Artificial color space CIE XYZ
- Newly designed X, Y, Z color primaries (non-real)
- All X, Y, Z functions positive
- The idea: Make all colors by composing X, Y, Z only

CIE XYZ Color Model

- Theoretical RGB primaries
- XYZ primaries

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\frac{1}{b_{21}}\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]=\frac{1}{0.17697}\left[\begin{array}{ccc}
0.49 & 0.31 & 0.20 \\
0.17697 & 0.81240 & 0.01063 \\
0.00 & 0.01 & 0.99
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

CIE XYZ Color Model

- Cone of visible colors in CIE XYZ space
- $\mathrm{X}+\mathrm{Y}+\mathrm{Z}=1$ plane is shown:
- Constant luminance
- Only depends on dominant wavelength and saturation

CIE Chromaticity Diagram

Colors on $\mathrm{X}+\mathrm{Y}+\mathrm{Z}=1$ plane Normalization => 2D space: $\boldsymbol{x}=\frac{\boldsymbol{X}}{\boldsymbol{X}+\boldsymbol{Y}+\boldsymbol{Z}} \quad \boldsymbol{y}=\frac{\boldsymbol{Y}}{\boldsymbol{X}+\boldsymbol{Y}+\boldsymbol{Z}}$
Colors on the right are symbolical only:

- No chance to show them all on RGB devices.
- C ... white (grey)
- Triangle = gamut
- Linear combination (gamut, AB)

- Outline = discrete spectral colors

[http://www.rp-photonics.com/rgb_sources.html]

Content

- 1) Principles of color perception, colorimetry
- Light, color, perception
- Colorimetry, comparison of colors
- 2) Color models in technical applications
- RGB, CMY(K), HSV, HLS, YUV, YC C_{b}
- CIE L*a*b, CIE Luv

RGB = Red Green Blue

- For TVs, monitors, projectors
- Additive color composition
- Corresponds to adding light (e.g. emitted by LED)
- [0,0,0] = black
- $[1,1,1]=$ white
- RGB cube
- Visualization of RGB space
- Luminance of RGB color:
$-0.299 r+0.587 g+0.114 b$
- Various formulas in various apps

RGB = Red Green Blue

- Many different RGB spaces:
- Standards
- CIE RGB 1931
- sRGB (for web)
- Every output device has its „own" RGB space
- RGB image without calibration information is useless (in professional applications).

CMY = Cyan Magenta

- For printing devices
- Subtractive color composition
- Corresponds to mixing color pigments in paintings
- $[0,0,0]=$ white (paper color)
- [1,1,1] = black (all pigments together)
- Conversion RGB => CMY

$$
[C, M, Y]=[\mathbf{1}-R, \mathbf{1}-G, \mathbf{1}-B]
$$

CMYK = CMY + blacK

- Low quality of black when mixed from several color pigments
- Add black pigment among primary colors
- Save other pigments
- Conversion CMY => CMYK
$K=\min \left\{C^{\prime}, M^{\prime}, Y^{\prime}\right\}$
$t_{\text {CMYK }}=\left\{\frac{C^{\prime}-K}{1-K}, \frac{M^{\prime}-K}{1-K}, \frac{Y^{\prime}-K}{1-K}, K\right\}$

HSV = Hue Saturation Value

- Human-Computer interface for color selection
- Corresponds to human perception terms:
- H (Hue)
- S (Saturation)
- V (Value)

HSV = Hue Saturation Value

- H ... angle
- Color tones order: R Y G C B M
- S ... distance from central axis
- Saturated colors on a surface
- Grey(s) in axis (where H is undefined!)
- V ... distance from the cone top
- Top - black
- Base - the highest lightness

HSV: Conversion

- RGB => HSV

$$
\begin{aligned}
& H= \begin{cases}\text { undefined, } & \text { if } M A X=M I N \\
60 \times \frac{G-B}{M A X-M I N}+0, & \text { if } M A X=R \text { and } G \geq B \\
60 \times \frac{G-B}{M A X-M I N}+360, & \text { if } M A X=R \text { and } G<B \\
60 \times \frac{B-R}{M A X-M I N}+120, & \text { if } M A X=G \\
60 \times \frac{R-G}{M A X-M I N}+240, & \text { if } M A X=B\end{cases} \\
& S= \begin{cases}0, & \text { if MAX }=0 \\
1-\frac{M I N}{M A X}, & \text { otherwise }\end{cases} \\
& V
\end{aligned}
$$

HSV in user interfaces

- Orientation of a triangle - H
- Inside a triangle - S, V

$$
\begin{aligned}
& x+ \pm+ \pm \\
& x+ \pm+ \\
& x+5 C
\end{aligned}
$$

HLS = Hue Lightness Saturation

- Similar to HSV, but symmetrical

Givisx

- TV signal transmission in PAL standard
- Y ... brightness
- UV ... color/hue components (chroma)
- Conversion RGB => YUV:

$$
\begin{aligned}
& \mathbf{Y}=+0.299 \mathbf{R}+0.587 \mathbf{G}+0.114 \mathbf{B} \\
& \mathbf{U}=-0.1471 \mathbf{R}-0.288 \mathbf{G}+0.436 \mathbf{B} \\
& \mathbf{V}=+0.615 \mathbf{R}-0.514 \mathbf{G}-0.100 \mathbf{B}
\end{aligned}
$$

Y Cb Cr

- For digital video
- in JPEG compression algorithm

CIE L*a*b (CIELAB)

- Absolute color space (device independent)
- Non-linear compression of CIE XYZ colors
- Perceptually uniform (almost)
- Euclidian distance in CIELAB corresponds to perceived color differences

[^0]APG - Color
(32)

CIE L*a*b (CIELAB)

- Impossible to display all CIELAB colors in specific device(s) - due to limited device gamut(s)
- L*... brightness
- a^{*}, b^{*}... color opponent dimensions:
- a* ... red <=> green
- b* ... yellow <=> blue

CIE Luv

- Similar to CIE L*a*b*
- L*a*b* is considered to be better than Luv
- Luv used in historical reasons now (backward compatibility)

Thank you for your attention Jiří Žára, 25.11.2015

[^0]:

