Statistical data analysis
Learning from Sequential Genomic Data
A biologically-directed final assignment

Fall 2022/2023

Introduction

You are provided with three sets of DNA sequences. The first set represents introns. The
other two sets represent random DNA sequences that only look similar, they have the same
beginning and the end as the introns have. The goal is to learn from the sequential data, in
particular, to understand relationships between the DNA structure and its classification.

1 Background

Hereditary information encoding the development and functioning of an organism is stored
in a macromolecule called deozyribonucleic acid (DNA). The information is stored as a
sequence of nucleotides also called bases, namely adenine (A), cytosine (C), guanine (G)
and thymine (T). The information carried by DNA is held in the sequence of distinguish-
able regions of DNA called genes. Introns and ezons are continuous nucleotide sequences
within a gene. An intron (an acronym for intragenic region) is any nucleotide sequence
within a gene that is removed by RNA splicing during maturation of the final RNA prod-
uct. In other words, introns are non-coding regions of an RNA transcript, or the DNA
encoding it, that are eliminated by splicing before translation. Sequences that are joined
together in the final mature RNA after RNA splicing are exons. They code for amino
acids and proteins. An intergenic region is a stretch of DNA sequence located between
genes. Intergenic regions are noncoding and may have regulatory function.

In the human genome, introns are much longer than exons. They can make up as
much as 90% of a gene and can be over 10,000 nucleotides long. Introns are prevalent in
genes; over 90% of human genes contain introns with an average of nine introns per gene.
An intron is a stretch of DNA that begins and ends with a specific series of nucleotides.
These sequences act as the boundary between introns and exons and are known as splice
sites. The recognition of the boundary between coding and non-coding DNA is crucial for
the creation of functioning genes.

In this task you will deal with genomes of simple eukaryotes. Their introns are much
shorter than human ones mentioned above, their average length is around 60 nucleotides.
In our intron file they always begin with 5° GT (the donor splice site) and end in AG 3¢
(the acceptor splice site). The referential negative sequences are random parts of the same
genomes having the following characteristics: they start and end with the same splice sites
as introns do and have approximately the same length, they are taken from an arbitrary
part of genome (intergenic, exons, overlaps between introns and exons, etc.). This means



that the information about the length, the beginning and the end cannot directly be used
in intron recognition. However, there are other conserved sequences found in introns. The
main goal of this task is to understand the intron structure which should help to recognize
introns in DNA sequences.

2 Data

You are given three FASTA files. The file posintron.fasta contains 181,968 intron se-
quences taken from genomes of several different species. In further text we will denote
these sequences as introns. The file negIntron.fasta contains the same number of random
sequences taken from the same pool of genomes (as already mentioned above, they are not
completely random, remember the length, the GT beginning and the AG end). In further
text, these sequences will be referred to as random. The file neglntron WithSSites.fasta
contains the same number of negative sequences again. The sequences have the same char-
acteristics as in neglIntron.fasta (they do not stand for introns, but have similar lengths
and start and stop with the same dinucleotides as introns do). Unlike the previous file,
their splice site neighborhood looks similar to neighborhoods of true intron splice sites (as-
sessed by an unknown but reliable computational model). The sequences from the third
file will be named as splicesites.

The FASTA structure is simple. It is a text file, every sequence is represented by two
lines. The description line begins with > and gives a name for the sequence. It may
also contain additional information about it. In our files it simply numbers the sequence
that follows. Following the header line, the actual sequence is provided. The nucleic acid
codes supported in FASTA are: A, C, G, T, but also the degenerate codes such as N
(any nucleic acid symbol), R (A or G) and several others could in general be used. The
degenerate symbols represent for a position on a DNA sequence that can have multiple
possible alternatives. However, the degenerate symbols do not appear in our files.

>seq_1
GTGCGAATGGAGTAGAGCGCGTCCTTGCTGCAAGCTCACTGACTCGTCAATGTTCAG
>seq_2
GTGAGTGCATGGGATCTGAAGTCCTGTCGGCTCGCTCAATCTCGGTCGGCCAAAG

Fig. 1 A FASTA file, a few header lines representing two introns. The donor sites (GT)
in blue, the acceptor sites (AG) in red.

3 Tasks

The assignment can be decomposed into the following well-defined tasks:

1. Preprocessing. Load the FASTA files and turn the sequences into numeric vectors.
The simplest way to do it is to use k-mer (relative) frequency. In bioinformatics, k-
mers are subsequences of length k contained within a biological sequence. They are
primarily used within the context of computational genomics and sequence analysis.
In R, you can use ape and kmer libraries, their application is shown in preprocess.R.
To illustrate the decomposition of a sequence into a k-mer frequency vector, see the
following example:



GTGGGAATGG, k=3 -> GTG 1, TGG 2, GGG 1, GGA 1, GAA 1, AAT 1, ATG 1.
Fig. 2 The decomposition of a sequence into its k-mer frequency vector.

The main parameter to optimize in this subtask is the value of k. Short k-mers tend
to lose the structural information contained in the sequence while long k-mers could
lead to sparse and long frequency vectors that are difficult to learn from. Of course,
you can also propose and implement preprocessing that goes beyond the k-mers, for
example a search for structural patterns that frequently appear in introns and rarely
appear in random sequences, but this is not expected in any case and would be a
time-consuming bonus task.

0.3-

0.2-
type
o
g . intran
. random
01-
A c G T

0.0
factor(kmer)

Fig. 3 The difference between introns and random sequences in terms of the
relative frequency of bases. The graph suggests that even the most simple 1-mers
may help to distinguish between the sequence types. The relative frequency of
bases is not equal in introns and random sequences.

2. Exploratory analysis of the frequency vectors. Take the frequency file devel-
oped in the previous step, carry out dimensionality reduction and clustering. The
main goal is to see whether the class (intron/splicesite/random) manifests in clus-
ters. Show the explanatory plots and explain the relationship between the observed
sample distribution and the expected distribution. Let us assume that sequences
from the same group should have similar frequency profiles, different species may
also form different clusters (however, the name of species is not available in the
sequence annotation). An expected result could look similar to following (run on
downsampled data, splicesites completely omitted, sequence lengths shown in the
PCA plot):



> infron
* random

30

x
25

20

89X

¥ a% ‘
e
o 4 100 %
o oo
51X
3e
o J

15

PC2(8.3%)
10

== intron
== random 96 X
0 s 0 5w mow
PC1 (12.8%)
Fig. 4 Principal component analysis Hierarchical clustering, dendrogram

3. Differential k-mers. Find the k-mers whose relative frequency statistically differs
among the sequence types. Select a proper statistical method (ideas: t-test, ANOVA
and their non-parametric counterparts), test their assumptions, do not forget to do
multiple testing correction. An example of potentially differential k-mer could be
the 1-mer T (see Fig.3). Do not forget to generalize for longer k-mers. You do
not have to find all the possible differential k-mers, however, provide a systematic
identification method.

4. Predictive model. Create a model that predicts the sequence class (intron/splice-
site/random) based on the information contained in sequence. Definitely consider
linear /quadratic discriminant analysis and logistic regression, but you can try any
other learning algorithm too. Evaluate and compare the performance of the mod-
els. Utilize feature selection to simplify the models and improve their performance.
The numbers of sequences are large, cross-validation is not necessary here, you can
employ the hold-out method instead (a simple train/test/validate split), but use the
sets properly. You do not have to use all the available samples if necessary.

5. Skewed classes. The number of introns in real genomes is much smaller than the
number of random and splicesite sequences. In other words, our files downsample the
genomes with different sampling rates. Consider that the true number of introns is
50 times smaller than the number of random sequences and 10 times smaller than the
number of splicesite sequences. Explain how this information changes your solution
in the previous steps.

4 Submission and evaluation

Submit your solution to the upload system. Submit only the rmarkdown file named
intronSequences$§YOURFELUSERNAME.Rmd. This file should be considered as a report
containing a definition of the task, description of your implementation details, graphical
outcomes and your detailed answers to the required tasks. Remark: a Python notebook
can be submitted instead.



You can obtain up to 15 points for this assignment. The subtasks will be scored as
follows: 1 point for preprocessing, 3 points for exploratory analysis, 3 points for differential
k-mers, 5 points for prediction and 2 points for class skewness. Approximately 60% will
be given for the concept of the solution (selection of statistical methods and their correct
application, depth of the solution), 30% for the answers that summarize your solution
in the individual subtasks (interpretation of your results and explanation of their prac-
tical impact in natural language), 10% for formal issues (clarity of the code, comments,
readability of the rmarkdown as a whole).



	Background
	Data
	Tasks
	Submission and evaluation

