Description Logic ALC

Petr Křemen

October 26, 2022

1 Understanding ALC

Consider the following \mathcal{ALC} theory $\mathcal{K} = (\mathcal{T}, \{\})$, where \mathcal{T} contains the following axioms:

 $Man \sqsubseteq Person$ $Woman \sqsubseteq Person \sqcap \neg Man$ $Father \equiv Man \sqcap \exists hasChild \cdot Person$ $GrandFather \equiv \exists hasChild \cdot \exists hasChild \cdot \top$ $Sister \equiv Person \sqcap \neg Man \sqcap \exists hasSibling \cdot Person$

Ex. 1 — What is the meaning of these axioms? Do they reflect your understanding of reality?

Ex. 2 — Consider the following interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \bullet^{\mathcal{I}})$:

$$\Delta^{\mathcal{I}} = Person^{\mathcal{I}} = \{B, A\}$$

$$Man^{\mathcal{I}} = \{B\}$$

$$Woman^{\mathcal{I}} = \{A\}$$

$$Father^{\mathcal{I}} = GrandFather^{\mathcal{I}} = \{B\}$$

$$hasChild^{\mathcal{I}} = \{(B, B)\}$$

$$hasSibling^{\mathcal{I}} = \{\}$$

$$Sister^{\mathcal{I}} = \{B\}$$
(1)

- 1. Is \mathcal{I} a model \mathcal{K} ? If yes, decide, whether \mathcal{I} reflects reality.
- 2. We know that \mathcal{ALC} has the tree model property and finite model property. In case \mathcal{I} is a model, is \mathcal{I} tree-shaped? If not, find a model that is tree-shaped.
- **Ex. 3** How does the situation change when we consider \mathcal{I}_1 which coincides with \mathcal{I} , except that $Sister_1^{\mathcal{I}} = \{\}$?
- **Ex. 4** Using the vocabulary from \mathcal{K} , define the concept "A father having just sons."

Ex. 5 — Using the vocabulary from \mathcal{K} , define the concept "A man who has no brother, but at least one sister with at least one child."

Ex. 6 — During knowledge modeling, it is often necessary to specify:

global domain and range of given role, e.g. "By *hasChild* (role) we always connect a *Person* (domain) with another *Person* (range)".

local range of given role, e.g. "Every father having only sons (domain) can be connected by *hasChild* (role) just with a *Man* (range)".

Show, in which way it is possible to model global domain and range of these roles in \mathcal{ALC} .

2 Inference Procedures

Ex. 7 — Why inconsistency of an OWL-DL ontology is a problem? What is its consequence?

Ex. 8 — Show that disjointness of two concepts can be reduced to unsatisfiability of a single concept.

Ex. 9 — A concept C is satisfiable w.r.t. \mathcal{K} iff it is interpreted as a non-empty set in at least one model of \mathcal{K} . Is it possible to find out that C is interpreted as a non-empty set in all models of \mathcal{K} ?

3 Tableaux Algorithm for \mathcal{ALC}

Ex. 10 — Decide, whether the \mathcal{ALC} concept $\exists hasChild \cdot (Student \sqcap Employee) \sqcap \neg (\exists hasChild \cdot Student \sqcap \exists hasChild \cdot Employee)$ is satisfiable (w.r.t. an empty TBox). Show the run of the tableau algorithm in detail.

Ex. 11 — Decide, whether the theory/ontology $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ is consistent. Show the run of the tableau algorithm in detail.

- $\bullet \mathcal{T} = \{\exists hasChild \cdot \top \equiv Parent\}$
- $\bullet \mathcal{A} = \{ hasChild(JOHN, MARY), Woman(MARY) \}$

Ex. 12 — Decide and show, whether the ontology

$$\mathcal{K}_1 = (\mathcal{T} \cup \{Parent \sqsubseteq \forall hasChild \cdot \neg Woman\}, \mathcal{A})$$

is consistent.

Ex. 13 — Decide and show, whether the ontology

$$\mathcal{K}_2 = (\mathcal{T} \cup \{Parent \sqsubseteq \exists hasChild \cdot Parent\}, \mathcal{A})$$

is consistent.

4 Practically

- Ex. 14 Go through the Protégé Crash Course on the tutorial web pages.
- **Ex. 15** Model the ontology in Section 1 in Protégé and check (using the Pellet/HermiT reasoner) whether your solutions in the previous tasks were correct.
- Ex. 16 Adjust the Pizza ontology (https://github.com/owlcs/pizza-ontology), so that the class *IceCream* and *CheeseyVegetableTopping* become satisfiable. Explain, why the Pizza ontology is consistent, although it contains unsatisfiable classes.
- Ex. 17 Upload the original pizza ontology into GraphDB try different repository types (OWL-Max, OWL-Horst) and see how the inferences differ (e.g. Find all kinds of food, find all kinds of CheeseyPizza). Notice the weak OWL reasoning capabilities in GraphDB to use more complicated OWL reasoning you might export inferences using "Export inferred axioms as ontology" and import into GraphDB.