
Description Logic ALC
Petr Křemen

October 30, 2022

1 Understanding ALC
Consider the following ALC theory K = (T , {}), where T contains the following axioms:

Man v Person

Woman v Person u ¬Man

Father ≡ Man u ∃hasChild · Person

GrandFather ≡ ∃hasChild · ∃hasChild · >
Sister ≡ Person u ¬Man u ∃hasSibling · Person

Ex. 1 — What is the meaning of these axioms ? Do they reflect your understanding
of reality ?

Answer (Ex. 1) — For example, the third axiom defines a concept Father as any
Man that has some Person as a child. The fourth axiom is not well defined – it allows
grandfathers to be women. More precise version of the fourth axiom might be e.g.
GrandFather ≡Man u ∃hasChild · ∃hasChild · >.

Ex. 2 — Consider the following interpretation I = (∆I , •I):

∆I = PersonI = {B,A}
ManI = {B}

WomanI = {A}
FatherI = GrandFatherI = {B}

hasChildI = {(B,B)}
hasSiblingI = {}

SisterI = {B} (1)

1.Is I a model K ? If yes, decide, whether I reflects reality.

2.We know that ALC has the tree model property and finite model property. In case
I is a model, is I tree-shaped? If not, find a model that is tree-shaped.

1

Answer (Ex. 2) — I is not a model of K, as it does not satisfy the last axiom:
SisterI 6= PersonI ∩ (∆I \ManI) ∩ {x ∈ ∆I |(∃y ∈ ∆I)((x, y) ∈ hasSiblingI ∧ y ∈
PersonI)} – e.g. no (B, •) /∈ hasSiblingI

Ex. 3 — How does the situation change when we consider I1 which coincides with I,
except that SisterI1 = {} ?

Answer (Ex. 3) — Now, I1 is a model of K as it satisfies all axioms. However, it
does not reflect the reality well, as it states that a person B is his/her own child. This
interpretation is finite, yet not tree-shaped. A tree-shaped model ensured by the tree-
model property of ALC is e.g. the following infinite model I1 = (∆I1 , •I1), where

∆I1 = PersonI1 = {PHILIP,CHARLES,WILLIAM}
= ManI1 = FatherI1 = GrandFatherI1 = {A1, A2, . . .}i=1...∞

WomanI1 = SisterI1 = {}
hasChildI1 = {(Ai, Ai+1)}i=1...∞

hasSiblingI1 = {}
(2)

Ex. 4 — Using the vocabulary from K, define the concept “A father having just sons.”

Answer (Ex. 4) — FatherOfBoys ≡ Father u ∀hasChild ·Man

Ex. 5 — Using the vocabulary from K, define the concept “A man who has no brother,
but at least one sister with at least one child.”

Answer (Ex. 5) — HappyUncle ≡Manu∃hasSibling · (Woman u ∃hasChild · >)u
∀hasSibling · ¬Man

Ex. 6 — During knowledge modeling, it is often necessary to specify:

global domain and range of given role, e.g. “By hasChild (role) we always connect a
Person (domain) with another Person (range)”.

local range of given role, e.g. “Every father having only sons (domain) can be connected
by hasChild (role) just with a Man (range)”.

Show, in which way it is possible to model global domain and range of these roles in
ALC.

Answer (Ex. 6) — Global domain and range can be modeled as:

∃hasChild · > v Person

> v ∀hasChild · Person (3)

2

Local range is similar and only replaces the top concepts in the global range axiom:

∃hasChild · FatherOfSons v Person

FatherOfSons v ∀hasChild ·Man (4)

2 Inference Procedures
Ex. 7 — Why inconsistency of an OWL-DL ontology is a problem? What is its con-
sequence?

Answer (Ex. 7) — The logical calculus behind OWL-DL is based on first order logic.
Thus, an inconsistent ontology entails all axioms.

Ex. 8 — Show that disjointness of two concepts can be reduced to unsatisfiability of
a single concept.

Answer (Ex. 8) — Let’s reproduce the flow of equivalent operations for this simple
transformation:

K |= C v ¬D (5)

(∀I)(I |= K)⇒ (I |= (C v ¬D)) (6)

(∀I)(I |= K)⇒ (CI ⊆ ∆I \DI)) (7)

(∀I)(I |= K)⇒ (CI ∩DI ⊆ (∆I \DI) ∩DI = {})) (8)

(∀I)(I |= K)⇒ (I |= (C uD v ⊥)) (9)

K |= C uD v ⊥ (10)

K |= (C uD) is unsatisfiable (11)

Ex. 9 — A concept C is satisfiable w.r.t. K iff it is interpreted as a non-empty set in
at least one model of K. Is it possible to find out that C is interpreted as a non-empty
set in all models of K ?

Answer (Ex. 9) — If K ∪ (C v ⊥) is inconsistent for consistent K, then CI 6= {} for
each model I of K.

3 Tableaux Algorithm for ALC
Ex. 10 — Decide, whether the ALC concept ∃hasChild · (Student u Employee) u
¬(∃hasChild · Student u ∃hasChild · Employee) is satisfiable (w.r.t. an empty TBox).
Show the run of the tableau algorithm in detail.

Ex. 11 — Decide, whether the theory/ontology K = (T ,A) is consistent. Show the
run of the tableau algorithm in detail.

�T = {∃hasChild · > ≡ Parent}

3

�A = {hasChild(JOHN,MARY),Woman(MARY)}

Ex. 12 — Decide and show, whether the ontology

K1 = (T ∪ {Parent v ∀hasChild · ¬Woman},A)

is consistent.

Ex. 13 — Decide and show, whether the ontology

K2 = (T ∪ {Parent v ∃hasChild · Parent},A)

is consistent.

Answer (Ex. 13) — To check the consistency, we will use the tableau algorithm for
ALC. To keep description compact, we shorten Parent,hasChild, Woman as P, h,W
First, we need to internalize the TBOX

{∃h · > ≡ P,

P v ∃h · P}

into the single axiom > v >C , such that >C is:

(¬(∃h · >) t P) u (¬P t ∃h · >) u (¬P t ∃h · P) (12)

Now, we transform all concepts in K2 (here only >C) into negational normal form. TC :

(∀h · ⊥ t P) u (¬P t ∃h · >) u (¬P t ∃h · P) (13)

The initial state S0 = {G0} of the algorithm contains a single completion graph G0

representing the input ABOX

G0 does not contain a direct clash (there is neither ⊥, nor A and ¬A in the label of
a single node). G0 is not complete w.r.t ALC completion rules, as the v −rule is ap-
plicable. Applying the rule on the node JOHN we get a new tableau algorithm state
S1 = {G1} where G1 is

4

G1 is clash-free and not complete as well. Two rules are applicable – the v −rule and
the u−rule. We apply the latter one (as a heuristic, we expect the clash to be found
earlier using the u− rule) and get the state S2 = {G2} where G2 is

From now on we will proceed more quickly forward and show only tableau reasoner state
with the information about rule application and clashing graphs. Whenever more rules
are applicable, the one that is applied is marked in green, as well as the chosen graph.
Graphs containing a clash are no more shown in the algorithm state.

5

applicable
rules

state
before
applying
the rule

state after applying the rule

v, t {G2}

v, t,∀ {G2.1, G2.2}

G2.1.1 contains a direct clash.

v, t {G2.2}

G2.2.1 contains a direct clash.

6

applicable
rules

state
before
applying
the rule

state after applying the rule

v, t, ∃ {G2.2.2}

v, t {G2.2.2.1}

G2.2.2.1.1 contains a direct clash.

7

applicable
rules

state
before
applying
the rule

state after applying the rule

v, ∃ {G2.2.2.1.2}

a1 is blocked by JOHN as the label of a0 is a subset of
the label of JOHN .

Now, applying the sequence of rules (v,t, t, t) for MARY , a0 and a1, we get the
graph1

1We do not depict the whole algorithm state, as it contains several graphs of the similar size like G3

due to the fact that the presence of the label ∀h · ⊥ in the node a0 and MARY does lead to a clash,
contrary to the case of JOHN . This fact generates several alternative disjuncts for each node. Also
notice that we chose one set of disjuncts for a1 and another set of disjuncts for MARY and a0 in
order to avoid clash.

8

In this graph, a1 is blocked by JOHN and thus, the ∃ rules do note apply. Therefore,
this graph is complete and clash-free. The ontology K2 is consistent.

4 Practically

Ex. 14 — Go through the Protégé Crash Course on the tutorial web pages.

Ex. 15 — Model the ontology in Section 1 in Protégé and check (using the Pellet/Her-
miT reasoner) whether your solutions in the previous tasks were correct.

Ex. 16 — Adjust the Pizza ontology (https://github.com/owlcs/pizza-ontology),
so that the class IceCream and CheeseyV egetableTopping become satisfiable. Explain,
why the Pizza ontology is consistent, although it contains unsatisfiable classes.

Ex. 17 — Upload the original pizza ontology into GraphDB - try different repository
types (OWL-Max, OWL-Horst) and see how the inferences differ (e.g. Find all kinds of
food, find all kinds of CheeseyPizza). Notice the weak OWL reasoning capabilities in
GraphDB – to use more complicated OWL reasoning you might export inferences using
”Export inferred axioms as ontology” and import into GraphDB.

9

