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• Memory operation execution rules,
• Memory coherence – last lecture

• Rules for access to individual locations in memory

• Memory consistency – today lecture
• Rules for mutual order of execution and visibility of memory 

operations

• Ensuring sequential consistency, 
• Weaker memory consistency models

• Consistency achieved by synchronization, that is by 
special synchronization instructions. 

Terminology of the lecture topic
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We say that a multiprocessor memory system is coherent if

the results of any execution of a program are such that for 
each location, it is possible to construct a hypothetical serial 
order of all operations (reads and writes) to the location that 
is consistent with the results of the execution and in which:

1) Memory operations to a given memory location for each 
process are performed in the order in which they were 
initiated by the process.

2) The values returned by each read operation are the 
values of the most recent write operation in a given 
memory location with respect to the serial order.

Memory coherence definition (in common sense)
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Memory

Variable X

P2:  X=0;
P1:  X=0;
P1:  read(X)
P2:  read(X)
P2:  read(X)
P1:  X=1;
P2:  read(X)
P2:  read(X)
P2:  X=2;

At the time when P2 reads X==1, is it ensured that function fun() called by 
process P1 is executed with all side effects including global memory? 

P2:  read(X)
P2:  X=0;
P1:  X=0;
P1:  read(X)
P2:  read(X)
P1:  X=1;
P2:  read(X)
P2:  read(X)
P2:  X=2;

      Proces P1:
X=0;
if(X ==0) {
  y=fun();
  X = 1;
}

      Proces P2:
X=0;
while(X ==0) 
  { ; }
X = 2;

Coherence
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• Consistency (when compared to coherence) 
specifies the order in which the individual 
processes execute their memory operations and 
or how is this order viewed by other processes.

• Sequential order of all memory operations to all 
locations is considered.

• Coherence focuses only on hypothetical 
sequential order to individual memory 
locations but guarantees neither order nor 
visibility of accesses to different locations.

• Consistency defines what is expected behavior of 
shared memory regarding all reads and writes

Consistency
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CPU
Cache

CPU
Cache

CPU
Cache

Shared bus

Shared
memory

It is expected that print(x) writes 1 to output.

Variables initialization seen by both: x=0, y=0
P1: P2:
x = 1; while(y==0) {;}
y = 1; print(x);

Example of program execution on multiprocessor system
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Possible scenario of execution:
1. Processor P2 does not find y in cache and initiates a request to read from 

memory. The bus has to be obtained through arbitration first.
2. Processor P2 starts reading of x speculatively – line „print(x)“. It finds x value (0) 

in its cache. Speculation is conditionalized by variable y==1.
3. Processor P1 acquires the bus and executes write to variable x: „x=1“. The 

corresponding cacheline is marked as M (MESI protocol) and invalidated in P2. 
4. Processor P1 acquires the bus and writes y=1 into memory.
5. Processor P2 acquires the bus and reads y value. This confirms 

„correctness“/condition of speculation and speculative instructions are 
completed.

6. Processor P2 outputs 0.

Variables initialization seen by both: x=0, y=0
P1: P2:
x = 1; while(y==0){;}
y = 1; print(x);

Example of program execution on multiprocessor system
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• Variable y indicates that variable x has been changed.
• But memory coherence provides no guarantee for mutual execution 

order of memory operations (read, write) by P1 and P2 and the order in 
which the writes to x and y (different variables) are visible to P2.

• Coherence ensures only that the new values of x and y are finally 
visible to P2 but provides no guarantee about the order in which these 
values are obtained.

• That is why P2 can print the old value of x (which is 0) even on 
computer with coherent memory system.

• Coherence – which value is returned by read 
• Consistency – when is the written value returned by read

Coherence of cache memories is necessary (but not enough) 
for ensuring data (memory) consistency in a multiprocessor 
system.

Is coherence enough to ensure expected program behavior?
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• Single-processor system:
x = 1;
y = 2;
x = 3;
print(x);

(Each read from address x returns the last value written to 
address x. )

• For multi-processor system:
• Existence of global precise time in all nodes and 

immediate modification propagation
• Non-realistic (absurd) requirement 

time
x=1;

y=2;
x=3;

print(x);

Strict consistency
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• Definition (Lamport, 1979): “Computer is  sequentially consistent 
if the result of any execution is the same as if the operations of all 
the processors were executed in some sequential order, and the 
operations of each individual processor appear in this sequence in 
the order specified by its program.

• Sequential consistency is weaker model than strict consistency but 
it is implementable…

• If the processes are running on different processors, arbitrary 
interleaving of instructions execution is allowed, but all processes 
recognize memory changes in exactly the same order (including 
the writing one). Modifications are not propagated immediately, 
only their order is guaranteed (the consequence does not precede 
the cause).

Sequential consistency
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P1: P2: P3:
a=1; b=1; c=1;
print(b,c); print(a,c); print(a,b);

It can come as follows:

a=1;
b=1;
c=1;
print(b,c);
print(a,c);
print(a,b);

Let the variables be initialized with a=0, b=0, c=0.

time

Output: 111111

a=1;
print(b,c);
b=1;
print(a,c);
c=1;
print(a,b);

Output: 001011

etc.

There exist 6! different 
permutations of 
instruction interleaving but 
not all fulfill the sequential 
consistency requirement
6! / 8 = 90

Sequential consistency
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Legend:
• Write value „a“ to address „x“: w(x)a
• Read from address „x“. Return value is „a“: r(x)a

Example – consider 4 processors (processes) which are executed in parallel:
• P1:  w(x)a, w(x)c, r(x)?
• P2: w(x)b
• P3: r(x)?, r(x)?
• P4: r(x)?, r(x)?

P1 w(x)a w(x)c r(x)c

P2 w(x)b

P3 r(x)b r(x)b

P4 r(x)b r(x)b

Time/ordering

In given time instant, 
only single operation 
is executed

Operations swap in 
the process is not 
allowed.

Operations can be shifted in the 
process as long as order in the 
process is preserved

Sequential consistency
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I. Each processor P(i) issues memory operations in 
program order.

II. Before issuing next memory operation, processor P(i) 
waits until the last memory operation issued by P(i) 
completes  (i.e., performs w.r.t. all the other processors).

III. When Processor P(i) issues a Read operation, it does 
not issue another memory operation before the issued 
read operation is finished, and before the Write 
operation, whose value will be returned by the Read, is 
finished (w.r.t. all the other processors) → write 
atomicity.

• Not only the HW is required to keep sequential order, but even the 
compiler is not allowed to alternate the order of memory operations. 
But their reordering and elimination is usual/necessary for program 
optimization on single-processor system.

Sufficient conditions to ensure SC
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One of possible scenarios:
1. Processor P2 does not find y in cache and initiates a request to read from 

memory. The bus has to be obtained through arbitration first.
2. Processor P2 starts reading of x speculatively – line „print(x)“. It finds x value (0) 

in its cache. Speculation is donditionalized by variable y==1.
3. Processor P1 acquires the bus and executes write to variable x: „x=1“. The 

corresponding cacheline is marked as M (MESI protocol) and invalidated in P2.
4. Processor P1 acquires the bus and writes y=1 into memory. This invalidates y in 

P2 cache.
5. Processor P2 acquires the bus and reads y value. This confirms „correctness“ of 

speculation and speculative instructions are completed.
6. Processor P2 outputs 0  1. It has to read „x“ again/there because read in step 

number 3 is forbidden or aborted.

Let the variables be initialized: x=0, y=0
P1: P2:
x = 1; while(y==0){;}
y = 1; print(x);

Assume sequential consistency 
Condition violation III.

 Analysis of execution of program on SC system 
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• As shown in the example, forbidding speculation (as well as all 
read-ahead, reordering of memory operations, etc.) solves the 
problem. 

• Another solution is to isolate the processes as long as no variable 
sharing emerges – the absence of coherence activities indicates 
that the processor can reorder memory operations and enable 
speculation.

• But it is still necessary to keep/propagate the order of memory 
references regarding cache misses and snooping.

• The solution:
• Speculative execution is allowed
• All addresses relating to speculation (or reordering) have to be 

remembered until the instruction completes
• If some of these addresses collides with coherence activities, 

then the whole speculative execution branch is abandoned.

Sequential consistency and speculation
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One of possible scenarios:
1. Processor P2 does not find y in cache and initiates a request to read from 

memory. The bus has to be obtained through arbitration first.
2. Processor P2 starts reading of x speculatively – line „print(x)“. It finds x value (0) 

in its cache. Speculation is conditionalized by variable y==1.
3. Processor P1 acquires the bus and executes write to variable x: „x=1“. The 

corresponding cacheline is marked as M (MESI protocol) and invalidated in P2. 
This collides with address remembered for step 2 speculation. It is abandoned.

4. Processor P1 acquires the bus and writes y=1 into memory. 
5. Processor P2 acquires the bus and reads the value of  y. 
6. Processor P2 acquires the bus, requests the value of x, P1 cache changes state 

M→S, simultaneously send value of x to memory and P2 which changes state 
I→S. P2 outputs 1. 

Let the variables be initialized: x=0, y=0
P1: P2:
x = 1; while(y==0){;}
y = 1; print(x);

Assume sequential consistency 

Analysis of execution of program on such system 
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If processors (program) fulfill the sequential consistency conditions and 
the parallel system uses a shared bus, then the model of sequential 
consistency is achieved. Bus arbitration (acquire of time slot) in 
processor decides the memory operations order – the order can be 
perturbed for each collision occurrence, but the consistency conditions 
are preserved.

• Definition (Lamport, 1979): “Computer is  sequentially consistent 
if the result of any execution is the same as if the operations of all 
the processors were executed in some sequential order, and 
the operations of each individual processor appear in this 
sequence in the order specified by its program.

CPU
Cache

CPU
Cache

CPU
Cache

Shared bus

Shared
memory

The shared bus is exactly the 
place where “some” sequential 
instruction interleaving/order is 
ensured ⇒ serialization

Ensuring consistence for SMP system with shared memory
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Problem: 
Consider two processors P1 and P2 and a shared variable A. 
P1: A = A+1; P2: A = A +2;

As long as addition is atomic, the final value of A is A+3. However:

P1: load R1, A P2: load R1, A
addi R1,R1,1 addi R1,R1,2
store R1,A store R2,A

One of possible execution order results in value A+1:
P1: load R1, A

P2: load R1, A
addi R1,R1,2
store R1,A

addi R1,R1,1
store R1,A

This instruction 
interleaving fulfills 
sequential 
consistency model, 
but leads to  
„unexpected“ 
result.

Consistency – synchronization – example 
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Solution:

1. SW approach.  The code sequence incrementing A needs to be  
„protected“ against interaction -> mutual exclusion, critical section.
• Mutual exclusion in sequential consistency memory model can be 

realized with the use of atomic operations Read and Write.
• Dekker's algorithm – the first known correct solution – it guarantees 

mutual exclusion without the risk of being stuck in a deadlock, and 
resource allocation.

P1: wants_to_enter[0] = true;
    turn = 1;
    while(wants_to_enter[1] && turn==1)
       ; // busy waiting
    // critical section
    A=A+1;
    // end of critical section
    wants_to_enter[0] = false;

P2: wants_to_enter[1] = true;
    turn = 0;
    while(wants_to_enter[0] && turn==0)
       ; // busy waiting
    // critical section
    A=A+2;
    // end of critical section
    wants_to_enter[1] = false;

Peterson's algorithm: initial value of wants_to_enter = { false, false}

Consistency – synchronization – example 

Problem: 
Consider two processors P1 and P2 and a shared variable A. 
P1: A = A+1; P2: A = A +2;
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Solution:

2. SW+HW approach. The code sequence incrementing A needs to be  
„protected“ again interaction -> mutual exclusion, critical section.
SW-only approach is too complicated. We want to implement the code 
as:

while(!acquire(lock)) { waiting algorithm/schedule }
computation with shared data
release(lock)

Because multiple processes may attempt to acquire the lock at the same 
time, the process of acquiring a lock has to be atomic.
• Waiting algorithm: busy waiting or blocking waiting. Busy waiting – 

continual attempts to acquire the lock – no schedule, deadlock w.r.t. schedule 
on given processor, blocking waiting – the process enters sleep state, 
releases the processor (schedule), and is waken up when the lock is 
released. Combination of both techniques is possible.

Consistency – synchronization – example 

Problem: 
Consider two processors P1 and P2 and a shared variable A. 
P1: A = A+1; P2: A = A +2;
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A simple way to realize a lock (spinlock) is to use a shared memory atomic 
variable, which can signal one of two states - 0 (lock is free) or 1 (lock is 
acquired by some process). Lock acquisition then means checking that the 
variable value is 0 and setting it to 1. This operation has to be  atomic (i.e., 
no other memory operation to the given location is allowed to occur 
between the related read and write)!
 

This requires specific instruction in ISA which:
Reads, modifies and writes (RWM) the value into memory without 
interference.
test-and-set – all modern processors support such an operation in their 
ISA, or provide primitives which allow to build such a construct (ll, sc); This 
operation is a fundamental atomic operation. It writes 1 (set) to memory 
and returns the previous value of the variable.

• Generalization of test-and-set is exchange-and-swap and compare-and-
swap

● example: compare-and-exchange in implemented in x86 ISA by 
instruction: CMPXCHG with LOCK prefix

Consistency – synchronization
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CMPXCHG or CAS
bool CAS(unsigned *ptr, unsigned expected, unsigned new)
{

unsigned tmp = *ptr;
if (tmp == expected)

*ptr = new;
return tmp == expected; // some implementations returns read tmp

}

Consistency – synchronization – CAS discussion
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If test-and-set  is used, then the above code fragment can be 
implemented as: 

loop: test-and-set R2, lock  // test lock, fetch old value to R2 and set lock=1
         bnz R2, loop          // if R2 is not 0,  jump to loop, repeat acquire attempt
         load R1, A
         addi R1, R1, 1
         store R1, A
         store #0, lock          // release the lock by writing 0. 

Instruction test-and-set R2, lock, executes atomically: {load R2,lock; store 
#1,lock}

Another variation of atomic instructions are operations fetch-and-xx (i.e., fetch-and-increment, 
fetch-and-add, fetch-and-store, …).  If such an operation is used, then the program to 
increment A can be implemented by a single atomic instruction (or a C++ 11 construct, see 
later):

P1:  fetch-and-inc A; P2:  fetch-and-inc A;

while(!acquire(lock)){ ; }
operations with shared data  
release(lock)

Consistency – spinlock synchronization
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CPU 2
Cache

CPU 3
Cache

Shared
Memory
lock==0
A==0

CPU 1
Cache

CPU 0
Cache

CPU 0

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 1
     store R1, A
     store #0, lock

CPU 1

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 2
     store R1, A
     store #0, lock

CPU 2

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 3
     store R1, A
     store #0, lock

CPU 3

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 4
     store R1, A
     store #0, lock

• All CPUs attempt to execute the test-and-set instruction. That is why 
all of them request the bus. Only one receives it in a given instant of 
time. 

MESI protocol and spinlock based on test-and-set instruction
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CPU 2
Cache

CPU 3
Cache

Shared
Memory
lock==0
A==0

R2 == 0
lock == 1, M

CPU 0
Cache

CPU 0

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 1
     store R1, A
     store #0, lock

CPU 1

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 2
     store R1, A
     store #0, lock

CPU 2

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 3
     store R1, A
     store #0, lock

CPU 3

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 4
     store R1, A
     store #0, lock

• CPU 1 obtains the bus. It reads the value of „lock“ variable from 
memory to R2 and writes 1 to memory. The write happens only in its 
cache. The cache line reaches state M (modified).

MESI protocol and spinlock based on test-and-set instruction
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CPU 2
Cache

R2 == 1
lock == 1, S

Shared
Memory
lock==1
A==0

R2 == 0
lock == 1, S

CPU 0
Cache

CPU 0

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 1
     store R1, A
     store #0, lock

CPU 1

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 2
     store R1, A
     store #0, lock

CPU 2

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 3
     store R1, A
     store #0, lock

CPU 3

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 4
     store R1, A
     store #0, lock

● CPU 3 obtains the bus. It requests to read „lock“ value to R2. Snooping 
CPU 1 recognizes MemRead request and propagates the modified data to 
CPU 3 and memory. The corresponding line changes to S. CPU 3 
receives the data and its final cache state is S as well.

MESI protocol and spinlock based on test-and-set instruction
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CPU 2
Cache

R2 == 1
lock == 1, M

Shared
Memory
lock==1
A==0

R2 == 0
lock == 1, I

CPU 0
Cache

CPU 0

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 1
     store R1, A
     store #0, lock

CPU 1

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 2
     store R1, A
     store #0, lock

CPU 2

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 3
     store R1, A
     store #0, lock

CPU 3

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 4
     store R1, A
     store #0, lock

• CPU 3 keeps bus control (lock prefix). The next step of the atomic 
operation  test-and-set is to write 1 to “lock” memory location. That is 
recognized by the snooping CPU 1, which changes its state to I 
(invalid). CPU 3 reaches state M. CPU3 releases the bus.

MESI protocol and spinlock based on test-and-set instruction
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CPU 2
Cache

R2 == 1
lock == 1, M

Shared
Memory
lock==1
A==0

R2 == 0
lock == 1, I

CPU 0
Cache

CPU 0

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 1
     store R1, A
     store #0, lock

CPU 1

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 2
     store R1, A
     store #0, lock

CPU 2

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 3
     store R1, A
     store #0, lock

CPU 3

L: {load R2,lock; 
     store #1,lock}
     bnz R2, L
     load R1, A
     addi R1, R1, 4
     store R1, A
     store #0, lock

• CPU 0 obtains the bus. It reads “lock” and writes 1 to it. This results in 
invalidation of all the other caches and setting M in its own cache.  

• CPU 3 tests R2, but the value is 1. It jumps to label L to repeat the 
attempt to acquire the bus and receive “lock”.

MESI protocol and spinlock based on test-and-set instruction
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Observation:
• Each attempt to acquire the lock (successful or unsuccessful) modifies the 

value in cache line and requires its change to M state.
• Consequence is the invalidation of the corresponding cache line in all the other 

CPUs attempting to enter the critical section.
• Unsuccessful attempt to acquire the lock leads to the start of another attempt.
• When the number of CPUs increases, the bus load increases quadratically for 

both reads and writes.
• Remark: spinlock on single CPU without sleep or schedule disable causes deadlock.  

Enhancement No 1:
• If an attempt to acquire the lock is unsuccessful, then delay the next attempt  – 

sleep for exponentially increasing or random time.
Enhancement No 2:
• Execution of test-and-set instruction realizes 2 transactions on the bus, the 

second invalidating all the other caches.  It is advantageous to make the 
attempt to write conditional by checking that the lock is empty – only single 
MemRead transaction is repeated, which results in state S until there is a 
chance to acquire the lock released by other CPU. Bus load is decreased and 
continuous caches trashing is eliminated. But use of ll and sc is even better.

MESI protocol and spinlock based on test-and-set instruction
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Another alternative is the instruction pair load-locked (ll) (or load-link, 
load-linked, load-and-reserve) and store-conditional (sc), found in 
many modern ISAs.

• Instruction ll returns the value stored in memory, sc stores a new value 
to the address only if the value on linked address has not been modified 
by other thread/CPU – atomic operation is successful – implementation 
can be based on load address register (LAR) and added lock flag (LF).

loop:  ll R1, A // read A into R1, address A into LAR. LF=1;
addi R1, R1, 1
sc R1, A // if(LF==1) store R1 into A;          R1=LF; 
bz R1, loop

•    IBM PowerPC, DEC Alpha, MIPS, ARM, RISC-V, IA-64 

Problem: 
Consider two processors P1 and P2 and a shared variable A.
P1: A = A+1; P2: A = A +2;

Atomics implemented by load link + store conditional
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• ll and sc implementation requires at least minimal support in HW: link 
address register LAR for address monitoring and link flag LF.

• ll instruction: sets LF and LAR value – location or cache line is 
reserved/remembered for monitoring.

• sc instruction: if LF==1, then store data into memory. Return LF value.
• Important: sc instruction does not generate any transaction for 

unsuccessful state = does not invalidate cache lines.
• When content is changed or exception/interrupt occurs: clear LF
• Possible cache controller ll+sc support: 

• compare RWITM transactions addresses with address stored in 
LAR. Clear LF in case of addresses match.

• Do not allow linked cache line replacement as a result of cache lines 
reuse (cache replacement policy – e.g. LRU) when LF==1. 
Replacement would clear LF and result in situation when sc can never 
succeed. That would result in infinite repeat of code between ll-sc → active 
blocking – livelock.  SW-side solution is to forbid the use of any memory 
referencing instructions = no read, no write between ll and sc instructions 
and use memory barriers for out-of-order execution to prevent instructions in 
and around the ll+sc block to get out of or into the ll+sc region.

Atomics implemented by load link + store conditional
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Discussion

• Compare test-and-set and instruction pair ll-sc methods. Which 
variant loads the bus less?

• Is the memory coherent model enough to ensure sequential 
consistency model for lock? 

• Shared bus is not used today for cores/processors interconnection. 
It is possible that more requests are in flight simultaneously…

• What happens if 2 processors do RWITM simultaneously?

• What happens if requests and responses are
delivered to different processors in different order?

P3

cache

ME
M

P0

cache

ME
M

P2

cache

ME
M

P1

cache

ME
M

Solution:
Serialization (or synchronization) of requests (required for coherence and 
consistency) – same as on the bus … But there is no shared bus …
Instead of serialization: Home Node (see previous lecture), but only for 
single address/memory block
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Discussion

• In a sequential program exists this fragment of code:

Instr.1:   load  R1, A  // read of value A from memory to R1
Instr.2:   load  R2, B
Instr.3:   store R3, C  // value of R3 into C
Instr.4:   load  R4, D
…
Instr.N:   store R5, A

Question  No 1
• Is there problem to finish (execute) instruction No 2 before No 1?
Question No 2
• Is there problem to finish (execute) instruction N before No 1?
Question No 3
• Is there problem to finish (execute) instruction No 4 before No 3?
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• Load / Store instructions are responsible for data 
transfers from and to memory and processor general 
purpose registers

• Processor is equipped with only limited number of registers
• Compiler generates so called spill code, which swaps 

used variables data into memory temporarily to make 
registers available for processed variables – load/store 
instructions are used for this task

• Data dependencies – RAW, WAR, WAW – between 
load/store instructions referencing the same address

• Total ordering – keeping the program order of all 
load/store instructions. Is it necessary?

We already know...
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• The requirement of sequential consistency results in 
some restrictions on out-of-order execution of load/store 
instructions

• What happens if an exception occurs? 
• Memory state must be based on the sequential order of 

load/store instructions
• This results in requirement that memory operations must 

be executed in program order, or precisely, that memory 
must be updated as if the instructions were executed in 
program order

• If store instructions are executed in program order, the 
fulfillment of WAW and WAR dependencies is 
guaranteed. RAW dependencies are the only ones to 
care about …

• Load instructions – out-of-order

Model of sequential consistency
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For now, expect issuing of load/store instructions from the reservation station in 
order

• Load bypassing allows to execute load before store if they are 
memory independent. In other cases (if dependency exists): Load 
forwarding.

1. Address generation
2. Address translation
3. Memory access

1. Address generation
2. Address translation

Memory update

It can be 
incomplete

Load forwarding and Load bypassing
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For now, expect issuing of load/store instructions from the reservation station in 
order

• Load bypassing allows to execute load before store if they are 
memory independent. In other cases (if dependency exists): Load 
forwarding.

1. Address generation
2. Address translation
3. Memory access

1. Address
       generation
2. Address

translation

Memory update

It must be 
complete

Load forwarding and Load bypassing

This solution (complete 
address) allows both: 
load bypassing and 
load forwarding

Store: dispatched, 
issued, finished, 
completed, retired

Load – if match: 
discard read data 
and take one 
available  in  
Store buffer
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• Store buffer use enables significant speedup of  
sequential program execution… However:

L3 cache

L2 cache L2 cache L2 cache L2 cache

L1d L1i L1d L1i L1d L1i L1d L1i

Sto
re 

buff
er

Sto
re 

buff
er

Sto
re 

buff
er

Sto
re 

buff
er

Core 0 Core 1 Core 2 Core 3
1. Memory write is 
recorded in Store 

buffer

3. Propagation from Store 
buffer into cache which 

triggers coherence 
mechanism takes some 

time (same to regain 
consistency). Consistency 

is violated for that time.

2. Load forwarding allows to read correct/up-to-
date value to the core 0 

Store buffer
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• If it is allowed to issue instructions from reservation 
station out-of-ordert, then it is possible that a load 
instruction can be already executed but a preceding 
conflicting store (RAW hazard) is not in the store buffer 
yet (it can be executed, in reservation station or even in 
dispatch buffer). Information about conflicting store 
address is not known and RAW hazard cannot be 
detected.

• Solution?
• Assume that there is no dependency and check for 

dependency later …  => speculative execution
• Speculative load execution  is supported by Finished 

load buffer (Finish load queue)

Load forwarding and Load bypassing
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• Load instruction is stored in Finished load buffer between execution finishing and 
completion.

• Each time when store reaches completion, alias checking with FLB entries is 
performed. No conflict → store is finished ; Conflict→abandon load instr. speculation

Speculative execution of load instructions
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• Why to enable speculation of load instructions?
• It is useful to perform load as early as possible – other 

computation depends on it usually

• In addition, earlier load execution can initiate cache miss in 
advance

• It can mask cache miss penalty (main memory access time)

• However: In case of incorrect speculation – abandoning of 
speculated instructions (sequence starting by load) costs time 
and resources which could be better utilized...

• That is why to add: Dependence prediction
Dependency  between store and load is quite predictable for typical 
programs

• Memory dependence predictor then decides if the 
speculative load and following instruction should be started

Speculative execution
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CPU
Cache

CPU
Cache

CPU
Cache

Shared
memory

One of possible scenarios:
1. Processor P2 does not find y in cache and initiates a request to read from 

memory. The bus has to be obtained through arbitration first.
2. Processor P2 starts reading of x speculatively – line „print(x)“. It finds x value (0) 

in its cache. Speculation is conventionalized by variable y==1.
3. Processor P1 acquires the bus and executes write to variable x: „x=1“. The 

corresponding cacheline is marked as M (MESI protocol) and invalidated in P2. 
This collides with address remembered for step 2 speculation. It is abandoned.

4. Processor P1 acquires the bus and writes y=1 into memory.
5. Processor P2 acquires the bus and reads the value of y.
6. Processor P2 acquires the bus, requests the value of x, P1 cache changes state 

M→S, simultaneously sending the value of x to memory and to P2 which 
changes state I→S. P2 outputs 1.

Let the variables be initialized: x=0, y=0
P1: P2:
x = 1; while(y==0){;}
y = 1; print(x);

Assume sequential consistency But possible cache miss 
cannot be propagated out …

Execute example program on this system
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• Significant efforts have been made to accelerate the 
execution of applications on single-core processors – out-
of-order, speculation, store buffer before cache, ...

• These techniques are often not compatible with the 
sequential consistency model

• So what will we give up?
• Answer: The sequential consistency model

• But how can we ensure that the programmer does not get 
unexpected results?

• Answer: We will offer another consistency model – it will 
provide a sequentially consistent view only at certain times

• For this we need additional instructions … => HW and ISA 
support

Sequential consistency – summary
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Causal consistency (Hutto, Ahamad, 1990)
• Writes that are potentially causally bound must be seen by all processes in the 

same order. Concurrent writes may be seen in different order.
• Distinguishing events that are potentially dependent and which are not

• Reading on a given P is causally ordered before writing (even to another address) – the written value 
may depend on the read value

• Reading is causally ordered after an earlier write to the same address if the read has received data 
written by that write

• Writes at the same address by a given P are causally ordered as they were performed

• Weaker than sequential consistency

P1 w(x)a w(x)c r(x)c

P2 w(x)b r(x)c

P3 r(x)a r(x)b

P4 r(x)b r(x)a

Time

Simultaneous writes

Swap of operations 
in a given process is 
forbidden.

Operation can be 
arbitrarily shifted in 
given process

Causally ordered

P3 observes a first, then b.

P4 observes different order of concurrent writes

Another consistence models
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P1 w(x)a w(x)c

P2 w(x)b r(x)c w(x)d

P3 r(x)a r(x)b r(x)d  r(x)c

P4 r(x)b r(x)a r(x)c r(x)d

Writes are not causally 
bound – simultaneous 
writes

Write w(x)d on P2 is causally bound to earlier r(x)c, which is 
causally bound to write w(x)c on P1. That is why these writes 
are causally bound as well and systems has to ensure their 
order: w(x)c < w(x)d. This ensures that on P3 r(x) last read 
cannot return c  because d has been already seen by P3. 

Causal consistency (Hutto, Ahamad, 1990)
• Writes that are potentially causally bound must be seen by all processes in the 

same order. Concurrent writes may be seen in different order.
• Distinguishing events that are potentially dependent and which are not

• Reading on a given P is causally ordered before writing (even to another address) – the written value 
may depend on the read value

• Reading is causally ordered after an earlier write to the same address if the read has received data 
written by that write

• Writes at the same address by a given P are causally ordered as they were performed

• Weaker than sequential consistency

Another consistence models
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• PRAM consistency (pipelined random access memory 
consistency) = FIFO consistency, (Lipton, Sandberg (1988)

• Writes executed by one process are seen by other processes in the 
order in which they were performed, but the writes executed by different 
processes can be seen by different processes differently (permuted).

• Weaker than sequential consistency

P1 w(x)a w(x)c

P2 w(x)b r(x)c w(x)d

P3 r(x)a r(x)b r(x)d  r(x)c

P4 r(x)b r(x)a r(x)c r(x)d

Writes by different 
processors can be seen 
in different order

Does not obey causality principle. 
Writes originate on different processors 
and that is why P3 can observe these 
in an order different to P4.

Another consistence models
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To recall

• In a sequential program exists this fragment of code:

Instr.1:   load  R1, A  // read of value A from memory to R1
Instr.2:   load  R2, B
Instr.3:   store R3, C  // value of R3 into C
Instr.4:   load  R4, D
…
Instr.N:   store R5, A

Question  No 1
• Is there problem to finish (execute) instruction No 2 before No 1?
Question No 2
• Is there problem to finish (execute) instruction N before No 1?
Question No 3
• Is there problem to finish (execute) instruction No 4 before No 3?
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   Relaxed consistency
• Sequential consistency preserves order of reads and writes:

1. W→R: write must be finished before the following read
2. R→R: read must be finished before the following read

3. R→W: read must be finished before the following write

4. W→W: write must be finished before the following write

• Relaxed consistency leaves out some of these requirements
• Additionally, we can leave out the requirement of a unique sequence 

interlace of instructions seen by all processors equally when:
5. A processor can observe the result of its write before it is seen by other processors

6. A processor can observe the result of other processor's write before it is seen by 
others

P1 w(x)a w(y)c w(z)d

P2 w(x)b r(x)b w(z)f

P3 r(x)b

It is possible to „reorder“ instructions in a given 
process based on „relaxation“. But the operations 
have to be referencing different addresses

More consistency models
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   Relaxed consistency – What are the benefits?
• W→R: removes Write from critical path – overlap of Write and 

following Read „reduces“ memory latency for Write. (Write in a coherent 
NUMA system means not only a write, but also finding of a valid block – queries to 
home node, distribution of invalidation to all others with block, block reading, etc.)

• R→R and R→W: nonblocking cache – it is possible to continue with 
execution even after read miss; waiting for the miss to be serviced is 
not necessary – speculative execution

• W→W: memory level parallelism
• Read of own write before others: Load forwarding – store buffer 

before cache → speedup of program execution
• Read of other processor's write before others: read from memory 

before the change is distributed to all others

• Thus, the relaxation allows parallel execution. Forced serialization 
required by sequential consistency is suppressed.

More consistency models
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Relaxed consistency
Following models falls into the relaxed consistency category:
• Total Store Ordering (TSO) – IBM 370: a read operation can be completed 

before an earlier write to another address, but the read cannot return the 
written value until the write is visible to all the other nodes

• Total Store Ordering (TSO) – SPARC: a read operation can be completed 
before an earlier write to another address. Read cannot return a value written 
by another processor until the write is visible to all the other processors. But 
the processor can return own written value before this write is visible to the 
other processors.

• Processor Consistency (PC): read can be completed before an earlier write 
(arbitrary processor to arbitrary place) is visible to all. That is, a read 
executed on some of the processors can return the new value while a read 
executed on other processors still returns the old value. 

• Partial Store Ordering (PSO) – similar to TSO. Difference: PSO preserves 
only the order of writes to the same address; writes to different locations can 
be reordered.

• And more…

More consistency models
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Relaxation

•  Write to Read program order
•  Write to Write program order
•  Read to Read and Read to Write program orders

•  Read others’ write early (write atomicity is not 
kept)

•  Read own write early To different addresses!

W->R W->W R->R,W Read own 
write before 
others

Read others 
write before 
others

TSO – IBM 370 x

TSO – SPARC: SPARC,   
IA-32, Intel64, AMD64

x x

PC x x x

PSO x x x

Weak consistency: PowerPC, 
ARMv7, IA-64

x x x x x

   Relaxed consistency

More consistency models
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Intel Core i5, Core  i7, Intel Xeon, Intel Core2 Extreme 

• Read in respect to read and write in respect to write on a given processor 
are not reordered (exception are special long string store and string move 
write operations)  – that is, R->R and W->W is not relaxed

• Write cannot precede an earlier read  – that is,  R->W is not relaxed

• Read can precede an earlier write to different address  – relaxed W->R, 
Dekker's algorithm can fail to protect critical section

P1: P2:
X=1; Y=1;

R1=Y; R2=X;

For initial values X=Y=0, it can return P1.R1=0 and simultaneously P2.R2=0.

• Read cannot precede an earlier write to the same address
• Load-forwarding inside a given processor is allowed – that is, read of own write before 

others

P1: P2:

X=1; Y=1;
R1=X; R3=Y;

R2=Y; R4=X;

For initial values X=Y=0, it can return P1.R2=0 and simultaneously P2.R4=0.

Consistency model of IA-32 and Intel64
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Intel Core i5, Core  i7, Intel Xeon, Intel Core2 Extreme 

• Writes are visible transitively – writes which are causally bound are seen 
by all the other processors in the same order

P1: P2: P3:
X=1; R1=X; R2=Y;

Y=1; R3=X;

For initial values X=Y=0, it cannot return P2.R1=1, P3.R2=1 and simultaneously 
P3.R3=0.

• Writes are seen by all other processors in same order – processor 
executing write can see different order

P1: P2: P3: P4:

X=1; Y=1; R1=X; R3=Y;
R2=Y; R4=X;

For initial values X=Y=0, it cannot return P3.R1=1, P3.R2=0, P4.R3=1 and 
simultaneously P4.R4=0.

• IA-32 and Intel64 architectures comply with TSO – SPARC consistency.

Consistency model of IA-32 and Intel64
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Example A:    
  P1:     P2:
A=1; while(flag==0);
flag=1; print(A);

Example B:    
   P1:     P2:
A=1; print(B);
B=1; print(A);

Example C:    
 P1:      P2:        P3:
A=1; while(A==0); while(B==0);

B=1;  print(A);

Example D:    
   P1:     P2:
A=1; B=1;
print(B); print(A);

Example A Example B Příklad C Příklad D

TSO – SPARC Yes Yes Yes No

PC Yes Yes No No

PSO No No No No

Weak consistency No No No No

Would the code be executed with conformance to sequential consistency?

Assuming that the compiler follows the order of lines/operation… Initial values: A=flag=0.

Which behavior can be expected for these code fragments?
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Use a memory barrier (more types, consider full for now)
• All data operations (instructions) BEFORE the barrier have to complete
• All data operations (instructions) AFTER the barrier have to wait until 

the barrier instruction is completed
• Barrier instructions are processed in program order

Programmer has to accept that memory operations working 
with shared variables can be arbitrarily reordered in each 
code sequence block. These blocks are separated by barriers.

• IA-32, Intel64 defines three barrier instructions: sfence, lfence, mfence
• Sfence – all store operations before the barrier have to be completed before 

the first store after the barrier instruction is executed
• Lfence – all load instructions before the barrier have to be completed before 

the first load after the barrier is executed
• Mfence – all memory operations have to be finished (be globally visible) 

before the first memory operation after the barrier instruction is executed
• PowerPC ISA defines sync instruction
• OpenMP defines flush directive

How to achieve desired behavior of program
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Use a memory barrier

Example A:    
P1:       P2:
A=1; while(flag==0);
#pragma omp flush #pragma omp flush
flag=1; print(A);
#pragma omp flush

Guarantees 
order

Accelerates flag 
propagation

• It is guaranteed that P2 will read 1 from variable A. Memory operations in the 
block before, between and after the barriers can be reordered by the compiler 
and/or hardware, but that does not influence the program result.

• The barrier instruction implementation must ensure that shared variables 
(thread-visible) are visible to all threads/processors after this directive → the 
compiler must ensure that for all such variables the values from registers are 
written to memory (Write/SW instructions are inserted), processor flushes write-
buffers, etc. 

• Memory barrier ensures sequentially consistent view of memory only in 
defined instants of time – the operation has to be considered by all the 
participating threads/processors.

How to achieve desired behavior of program
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The following synchronization types are distinguished in parallel 
programming:
• Two-point synchronization: ensures safe data passing between two 

processes (threads). The first one can eventually continue in execution 
without the need to wait – see the previous slide (or can be implemented by 
semaphore)

• Synchronization  barrier: all processes from the given process group 
must wait at this point until the last one reaches the barrier; then they can 
continue (Warning: do not confuse this barrier with the term memory barrier by mistake)

• Mutual exclusion – critical section: Only one of the processes can acquire 
access to the marked code block and the others need to wait until it exits 
the block (often implemented by mutex)

P1       P2 P1  P2   …   PN P1  P2   …     PN

Two-point 
synchronization

Synchr. 
barrier

Critical 
section

Synchronization events types
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Two-point synchronization:
#pragma omp flush
as has been shown already

Synchronization barrier:
… 
#pragma omp barrier
…

Notice: Flush operation (memory barrier) is inserted by two-point synchronization 
directive as well for the synchronization barrier and at critical section entry and exit – 
it is important for ensuring sequentially consistent memory view at the  given 
location.

The already introduced and described instructions for memory synchronization and 
atomic operations (test-and-set, pair ll-sc), together with memory barrier instructions  
(enforcing sequentially consistent view in a given instant of time) are the building 
blocks for implementation of the synchronization events described above.

Critical section:
#pragma omp critical 
{
    … // A = A+1;
}

Synchronization events types defined by OpenMP
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Using synchronization only in minimal required form

• Programming models using full memory barriers are too restrictive for 
efficient use of processor cores.

• It is useful to define memory models which allow to precisely define the 
purpose of shared variable access/modification. There are the following 
use cases:
• atomic operation concerning only the specified variable (relaxed 

model, i.e. A+=2)
• confirmation of data availability in some other variables (release)
• for checking that data protected by the read/modified variable are 

ready (consume)
• for overtaking of control/lock for related resources (acquire)
• combined (acq-rel)
• complete synchronization (seq_cst)

Only last one, the most expensive (Sequentially-consistent ordering), 
corresponds to the synchronization events introduced before.

• The most sophisticated model of these operations is probably the one 
defined in the C++11 language standard
http://en.cppreference.com/w/cpp/atomic/memory_order

http://en.cppreference.com/w/cpp/atomic/memory_order
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Ticket-lock based on C++ memory model

• Ticket-lock is a spinlock implementation, critical section with 
busy waiting

• Peter Cordes – analysis of question on StackOverflow about 
implementation optimization for GCC
https://stackoverflow.com/questions/33284236/implementing
-a-ticket-lock-with-atomics-generates-extra-mov

#include <atomic>

struct atom_ticket { std::atomic<uint32_t> next_ticket,now_serving;};

void lock_acquire(atom_ticket* tkt) {
    const auto my_ticket =
        tkt->next_ticket.fetch_add(1,std::memory_order_acquire);
    while (tkt->now_serving.load(std::memory_order_acquire) !=
           my_ticket) {
        _mm_pause(); /* x86 specific, #include <immintrin.h> */
    }   
}

void lock_release(atom_ticket* tkt) {
        tkt->now_serving++; // variable data type ensures atomic increment
}                 // the strongest memory_order_seq_cst model is used

https://stackoverflow.com/questions/33284236/implementing-a-ticket-lock-with-atomics-generates-extra-mov
https://stackoverflow.com/questions/33284236/implementing-a-ticket-lock-with-atomics-generates-extra-mov
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lock_acquire(atom_ticket*):
        mov        edx, 1
        lock xadd  DWORD PTR [rdi], edx
        add        rdi, 4
.L2:
        mov        eax, DWORD PTR [rdi]
        cmp        edx, eax
        jne        .L2
        rep ret

lock_release(atom_ticket*):
        lock add   DWORD PTR [rdi+4], 1
        ret

• Compilation by https://gcc.godbolt.org/
• x86_64 gcc 5.2 -std=gnu++1y -Wall -O3 -ffast-math  -fverbose

-asm -march=native -mtune=native

Ticket-lock – compilation for x86_86

https://gcc.godbolt.org/
https://gcc.godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(j:1,source:'%23include+%3Catomic%3E%0A%0Astruct+atom_ticket+%7B+std::atomic%3Cuint32_t%3E+next_ticket,now_serving%3B%7D%3B%0A%0Avoid+lock_acquire(atom_ticket*+tkt)+%7B%0A++++const+auto+my_ticket+%3D%0A++++++++tkt-%3Enext_ticket.fetch_add(1,std::memory_order_acquire)%3B%0A++++while+(tkt-%3Enow_serving.load(std::memory_order_acquire)+!!%3D%0A+++++++++++my_ticket)+%7B%0A++++++++//_mm_pause()%3B+/*+specifick%C3%A9+pro+x86,+%23include+%3Cimmintrin.h%3E+*/%0A++++%7D+++%0A%7D%0A%0Avoid+lock_release(atom_ticket*+tkt)+%7B%0A++++++++tkt-%3Enow_serving%2B%2B%3B+//+typem+je+dan%C3%A9,+%C5%BEe+bude+inkrement+atomick%C3%BD%0A%7D'),l:'5',n:'0',o:'C%2B%2B+source+%231',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(compiler:g72,filters:(b:'0',binary:'1',commentOnly:'0',demangle:'0',directives:'0',execute:'1',intel:'0',trim:'1'),libs:!(),options:'-std%3Dgnu%2B%2B1y+-Wall+-O3+-ffast-math++-fverbose-asm+-march%3Dnative+-mtune%3Dnative',source:1),l:'5',n:'0',o:'x86-64+gcc+7.2+(Editor+%231,+Compiler+%231)',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4
https://gcc.godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(j:1,source:'%23include+%3Catomic%3E%0A%0Astruct+atom_ticket+%7B+std::atomic%3Cuint32_t%3E+next_ticket,now_serving%3B%7D%3B%0A%0Avoid+lock_acquire(atom_ticket*+tkt)+%7B%0A++++const+auto+my_ticket+%3D%0A++++++++tkt-%3Enext_ticket.fetch_add(1,std::memory_order_acquire)%3B%0A++++while+(tkt-%3Enow_serving.load(std::memory_order_acquire)+!!%3D%0A+++++++++++my_ticket)+%7B%0A++++++++//_mm_pause()%3B+/*+specifick%C3%A9+pro+x86,+%23include+%3Cimmintrin.h%3E+*/%0A++++%7D+++%0A%7D%0A%0Avoid+lock_release(atom_ticket*+tkt)+%7B%0A++++++++tkt-%3Enow_serving%2B%2B%3B+//+typem+je+dan%C3%A9,+%C5%BEe+bude+inkrement+atomick%C3%BD%0A%7D'),l:'5',n:'0',o:'C%2B%2B+source+%231',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(compiler:g72,filters:(b:'0',binary:'1',commentOnly:'0',demangle:'0',directives:'0',execute:'1',intel:'0',trim:'1'),libs:!(),options:'-std%3Dgnu%2B%2B1y+-Wall+-O3+-ffast-math++-fverbose-asm+-march%3Dnative+-mtune%3Dnative',source:1),l:'5',n:'0',o:'x86-64+gcc+7.2+(Editor+%231,+Compiler+%231)',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4
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lock_acquire(atom_ticket*):
1:  ll      $3,0($4)
    addiu   $1,$3,1
    sc      $1,0($4)
    beq     $1,$0,1b
    nop
    sync
    addiu   $4,$4,4
2:  lw      $2,0($4)
    sync
    bne     $3,$2,2b
    nop
    jr      $31
    nop

• Compilation by https://gcc.godbolt.org/
• MIPS gcc 5.4 -std=gnu++1y -Wall -O3 -ffast-math

lock_release(atom_ticket*):
    sync
1:  ll      $1,4($4)
    addiu   $1,$1,1
    sc      $1,4($4)
    beq     $1,$0,1b
    nop
    sync
    jr      $31
    nop

Ticket-lock – compilation for MIPS

https://gcc.godbolt.org/
https://gcc.godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(j:1,source:'%23include+%3Catomic%3E%0A%0Astruct+atom_ticket+%7B+std::atomic%3Cuint32_t%3E+next_ticket,now_serving%3B%7D%3B%0A%0Avoid+lock_acquire(atom_ticket*+tkt)+%7B%0A++++const+auto+my_ticket+%3D%0A++++++++tkt-%3Enext_ticket.fetch_add(1,std::memory_order_acquire)%3B%0A++++while+(tkt-%3Enow_serving.load(std::memory_order_acquire)+!!%3D%0A+++++++++++my_ticket)+%7B%0A++++++++//_mm_pause()%3B+/*+specifick%C3%A9+pro+x86,+%23include+%3Cimmintrin.h%3E+*/%0A++++%7D+++%0A%7D%0A%0Avoid+lock_release(atom_ticket*+tkt)+%7B%0A++++++++tkt-%3Enow_serving%2B%2B%3B+//+typem+je+dan%C3%A9,+%C5%BEe+bude+inkrement+atomick%C3%BD%0A%7D'),l:'5',n:'0',o:'C%2B%2B+source+%231',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(compiler:mips5,filters:(b:'1',binary:'1',commentOnly:'0',demangle:'0',directives:'0',execute:'1',intel:'0',trim:'1'),libs:!(),options:'-std%3Dgnu%2B%2B1y+-Wall+-O3+-ffast-math+',source:1),l:'5',n:'0',o:'MIPS+gcc+5.4+(Editor+%231,+Compiler+%231)',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4
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lock_acquire(atom_ticket*):
.L4:ldaxr   w2, [x0]
    add     w1, w2, 1
    stxr    w3, w1, [x0]
    cbnz    w3, .L4
    add     x0, x0, 4
.L2:ldar    w1, [x0]
    cmp     w2, w1
    bne     .L2
    ret

• Compilation by https://gcc.godbolt.org/
• ARM64 gcc 6.3 -std=gnu++1y -Wall -O4

lock_release(atom_ticket*):
    add     x0, x0, 4
.L7:ldaxr   w1, [x0]
    add     w1, w1, 1
    stlxr   w2, w1, [x0]
    cbnz    w2, .L7
    ret

Ticket-lock – compilation for ARM Aarch64

https://gcc.godbolt.org/
https://gcc.godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(j:1,source:%27%23include+%3Catomic%3E%0A%0Astruct+atom_ticket+%7B+std::atomic%3Cuint32_t%3E+next_ticket,now_serving%3B%7D%3B%0A%0Avoid+lock_acquire(atom_ticket*+tkt)+%7B%0A++++const+auto+my_ticket+%3D%0A++++++++tkt-%3Enext_ticket.fetch_add(1,std::memory_order_acquire)%3B%0A++++while+(tkt-%3Enow_serving.load(std::memory_order_acquire)+!!%3D%0A+++++++++++my_ticket)+%7B%0A++++++++//_mm_pause()%3B+/*+specifick%C3%A9+pro+x86,+%23include+%3Cimmintrin.h%3E+*/%0A++++%7D+++%0A%7D%0A%0Avoid+lock_release(atom_ticket*+tkt)+%7B%0A++++++++tkt-%3Enow_serving%2B%2B%3B+//+typem+je+dan%C3%A9,+%C5%BEe+bude+inkrement+atomick%C3%BD%0A%7D%27),l:%275%27,n:%270%27,o:%27C%2B%2B+source+%231%27,t:%270%27)),k:50,l:%274%27,n:%270%27,o:%27%27,s:0,t:%270%27),(g:!((h:compiler,i:(compiler:mips5,filters:(b:%271%27,binary:%271%27,commentOnly:%270%27,demangle:%270%27,directives:%270%27,execute:%271%27,intel:%270%27,trim:%271%27),libs:!(),options:%27-std%3Dgnu%2B%2B1y+-Wall+-O3+-ffast-math+%27,source:1),l:%275%27,n:%270%27,o:%27MIPS+gcc+5.4+(Editor+%231,+Compiler+%231)%27,t:%270%27)),k:50,l:%274%27,n:%270%27,o:%27%27,s:0,t:%270%27)),l:%272%27,n:%270%27,o:%27%27,t:%270%27)),version:4
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Ticket-lock – compilation for ARM 32-bit

lock_acquire(atom_ticket*):
    push {r4, r5, r6, lr}
    mov  r1, #1
    mov  r5, r0
    bl   __sync_fetch_and_add_4
    mov  r6, r0
    add  r5, r5, #4
.L2:ldr  r4, [r5]
    bl   __sync_synchronize
    cmp  r6, r4
    bne  .L2
    pop  {r4, r5, r6, lr}
    bx   lr

• Compilation by https://gcc.godbolt.org/
• ARM gcc 6.3.0 -std=gnu++1y -Wall -O4

lock_release(atom_ticket*):
    push {r4, lr}
    add  r0, r0, #4
    mov  r1, #1
    bl __sync_fetch_and_add_4
    pop  {r4, lr}
    bx   lr

https://gcc.godbolt.org/
https://gcc.godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(j:1,source:'%23include+%3Catomic%3E%0A%0Astruct+atom_ticket+%7B+std::atomic%3Cuint32_t%3E+next_ticket,now_serving%3B%7D%3B%0A%0Avoid+lock_acquire(atom_ticket*+tkt)+%7B%0A++++const+auto+my_ticket+%3D%0A++++++++tkt-%3Enext_ticket.fetch_add(1,std::memory_order_acquire)%3B%0A++++while+(tkt-%3Enow_serving.load(std::memory_order_acquire)+!!%3D%0A+++++++++++my_ticket)+%7B%0A++++++++//_mm_pause()%3B+/*+specifick%C3%A9+pro+x86,+%23include+%3Cimmintrin.h%3E+*/%0A++++%7D+++%0A%7D%0A%0Avoid+lock_release(atom_ticket*+tkt)+%7B%0A++++++++tkt-%3Enow_serving%2B%2B%3B+//+typem+je+dan%C3%A9,+%C5%BEe+bude+inkrement+atomick%C3%BD%0A%7D'),l:'5',n:'0',o:'C%2B%2B+source+%231',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(compiler:armg630,filters:(b:'1',binary:'1',commentOnly:'0',demangle:'0',directives:'0',execute:'1',intel:'0',trim:'1'),libs:!(),options:'-std%3Dgnu%2B%2B1y+-Wall+-O4',source:1),l:'5',n:'0',o:'ARM+gcc+6.3.0+(linux)+(Editor+%231,+Compiler+%231)',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4
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Ticket-lock – compilation for ARM Cortex-A7

lock_acquire(atom_ticket*):
.L4:ldrex   r2, [r0]
    add     r3, r2, #1
    strex   r1, r3, [r0]
    cmp     r1, #0
    bne     .L4
    add     r0, r0, #4
    dmb     ish
.L2:ldr     r3, [r0]
    dmb     ish
    cmp     r2, r3
    bne     .L2
    bx      lr

• Compilation by https://gcc.godbolt.org/
• ARM gcc 6.3 -std=gnu++1y -Wall -O4 -march=armv7-a

lock_release(atom_ticket*):
    add     r0, r0, #4
    dmb     ish
.L7:ldrex   r3, [r0]
    add     r3, r3, #1
    strex   r2, r3, [r0]
    cmp     r2, #0
    bne     .L7
    dmb     ish
    bx      lr

https://gcc.godbolt.org/
https://gcc.godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(j:1,source:'%23include+%3Catomic%3E%0A%0Astruct+atom_ticket+%7B+std::atomic%3Cuint32_t%3E+next_ticket,now_serving%3B%7D%3B%0A%0Avoid+lock_acquire(atom_ticket*+tkt)+%7B%0A++++const+auto+my_ticket+%3D%0A++++++++tkt-%3Enext_ticket.fetch_add(1,std::memory_order_acquire)%3B%0A++++while+(tkt-%3Enow_serving.load(std::memory_order_acquire)+!!%3D%0A+++++++++++my_ticket)+%7B%0A++++++++//_mm_pause()%3B+/*+specifick%C3%A9+pro+x86,+%23include+%3Cimmintrin.h%3E+*/%0A++++%7D+++%0A%7D%0A%0Avoid+lock_release(atom_ticket*+tkt)+%7B%0A++++++++tkt-%3Enow_serving%2B%2B%3B+//+typem+je+dan%C3%A9,+%C5%BEe+bude+inkrement+atomick%C3%BD%0A%7D'),l:'5',n:'0',o:'C%2B%2B+source+%231',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(compiler:armg630,filters:(b:'1',binary:'1',commentOnly:'0',demangle:'0',directives:'0',execute:'1',intel:'0',trim:'1'),libs:!(),options:'-std%3Dgnu%2B%2B1y+-Wall+-O4+-march%3Darmv7-a',source:1),l:'5',n:'0',o:'ARM+gcc+6.3.0+(linux)+(Editor+%231,+Compiler+%231)',t:'0')),k:50,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4
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Memory model for parallel programming and Linux

• Paul E. McKenney, IBM
• Memory Ordering in Modern Microprocessors, 

http://www2.rdrop.com/users/paulmck/scalability/paper/
whymb.2010.07.23a.pdf

• Is Parallel Programming Hard, And, If So, What Can You 
Do About It?
https://www.kernel.org/pub/linux/kernel/people/paulmck/
perfbook/perfbook.html

• SMP Scalability Papers
http://www2.rdrop.com/users/paulmck/scalability/

• Read-Copy-Update (RCU) papers
http://www2.rdrop.com/users/paulmck/RCU/

http://www2.rdrop.com/users/paulmck/scalability/paper/whymb.2010.07.23a.pdf
http://www2.rdrop.com/users/paulmck/scalability/paper/whymb.2010.07.23a.pdf
https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://www2.rdrop.com/users/paulmck/scalability/
http://www2.rdrop.com/users/paulmck/RCU/
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• Definition of sequentially consistent memory system is eligible for 
synchronization in parallel computers. 

• Today computer systems support some of the weaker models of memory 
consistency, where the sequential consistency behavior may be specified 
only in defined locations of programs with the use of some of the 
synchronization operations. 

• Synchronization operations are mutual exclusion, conditional/semaphore 
synchronization (two-point synchronization), and synchronization barrier.

• Implementation of synchronization operations is based on atomic RMW 
primitives and memory barriers.
• Processors ISA includes RMW instructions T&S, SWAP, F&I, C&S
• Newer processors support building of RMW primitives by inclusion of  

LL and SC instructions, which allow an efficient implementation of 
synchronization operations in systems with cache memories

• Memory barrier ensures separation/ordering of memory operations before 
and after the barrier. These instructions are found in different variants in ISA 
of contemporary processors as well.

Conclusion and summary
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