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• What is cache memory?
• What is SMP?
• Other multi-processor systems?

UMA, NUMA, aj.
• Consistence and coherence
• Coherence protocol
• Explanation of states of cache lines

Content
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Multiprocessor systems

Change of meaning: Multiprocessor systems = system with multiple processors. 
Toady term processor can refer even to package/silicon with multiple cores. 

Software point of view (how programmer seems the system):
• Shared memory systems - SMS. Single operating system 

(OS, single image), Standard: OpenMP,  MPI (Message 
Passing Interface) can be used as well.

• Advantages: easier programming and data sharing
• Distributed memory systems - DMS: communication and 

data exchange by message passing. The unique instance 
of OS on each node (processor, a group of processors - 
hybrid). Network protocols, RPC, Standard: MPI. Sometimes 
labeled as NoRMA (No Remote Memory Access)

• Advantages: less HW required, easier scaling
• Often speedup by Remote Direct Memory Access (RDMA), 

Remote Memory Access (RMA), i.e., for InfiniBand 
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Multiprocessor systems

Hardware point of view:
• Shared memory systems – single/common physical address-

space – SMP: UMA
• Distributed memory system – memory physically distributed to 

multiple nodes, address-space private to the node (cluster) or   
global i.e., NUMA, then more or less hybrid memory organization 

Definitions:
• SMP – Symmetric multiprocessor – processors are connected to the central common 

memory.  Processors are identical and „access“ memory and the rest of the system 
same way (by same address, port, instructions). 

• UMA – Uniform Memory Access – all memory ranges are accessed from different 
CPUs in the same time. UMA systems are the most often implemented  as SMP today.

• NUMA – Non-Uniform Memory Access – memory access time depends on accessed 
location (address) and initiating processor/node. Faster node local, slower remote.

• ccNUMA – cache-coherent NUMA – coherence is guaranteed by HW resources
• Cluster – a group of cooperating computers with a fast interconnection network and 

SW which allows viewing the group as a single computing system.
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Traditional SMP, and UMA P
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It can be a crossbar switch, 
or a dynamic multi-stage 
interconnection network, or 
some type of fast static 
network

Multiprocessor systems - examples
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HDD

HDD

HDDHDD

Try to find SMP system ??? 
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• Multiprocessor systems have existed for decades and have been used for 
demanding computing in science and commerce ...

• With the introduction of the first multi-core processors is the SMP available to 
ordinary computer (PC, tablets, phones, …) users

http://www.intel.de

Memory controller 
(Nord bridge) – fulfills 
the function of bus/ 
interconnection network

I/O controller 
(south bridge)
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CacheCache

PC – from SMP to NUMA development



8B4M35PAP Advanced Computer Architectures

• Further development shifted the function of the northern bridge directly 
into the processor.

The memory controller can
• be found there.

P

cache

Main 
Memory

P

cache…

interconnection

http://www.intel.de

Core i7-2600K

The core can be seen as (de 
facto is) processor. If the L3 
cache memory is inclusive 
then it can be seen as whole 
main memory.

L2 Cache

 L1i  L1d

L2 Cache

 L1i  L1d

L2 Cache

 L1i  L1d

L2 Cache

 L1i  L1d

PC – from SMP to NUMA development
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• QuickPath Interconnect allows to mutually interconnect multiple 
processors…  As a result, common PC becomes a NUMA system. 

• Intel solution and design:

• QPI: point-to-point interconnect

PC – from SMP to NUMA development



10B4M35PAP Advanced Computer Architectures

• Four AMD Opteron™ 6000 
series processors (Socket 
G34) 16/12/8/4-Core ready; HT3.0 
Link support

• Up to 1TB DDR3 1600MHz
• 6x SATA2
• 1x PCI-E 2.0 x16 slot

Motherboard

• AMD solution and design (HT - HyperTransport):

PC – from SMP to NUMA development
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This lecture focus:

Shared memory systems

• Often developed as an extension of the single-processor 
computers by adding additional processors (or cores).

• Traditional single-processor OSs were extended to 
schedule processes for multiple processors.

• Multi-processor / multi-threaded program runs on single-
processor system in timesharing mode but uses multiple 
processors, if they are available.

• A suitable model for tasks with significant data sharing, data 
are shared automatically. Sharing is solved transparently in 
HW. Be careful about synchronization/race conditions.

• Difficult to scale for larger numbers of processors.

Shared memory systems
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1. Processor P1 inquiry PrRd(A) to own cache.

2. Data are not found in the cache => cache read miss

CPU
Cache

CPU
Cache

CPU
Cache

Shared bus

Shared
memoryP1 P2 P3

 0x0000

 0xFFFF

 0x00FC

1. PrRd(A)

2. Read miss

 13

Processor P1 intent to read data from address A (0x00FC):

3. BusRd(A)

3. Cache/bus controller of P1 sends BusRd(A) request to the bus.

4. Memory 
response: Delivers 

data to the bus
5. Update cache

4. The memory controller recognizes the request to read from given 
address (0x00FC) and provides data, value 13 for this example.

5. The cache controller of P1 receives bus data and stores them in cache. 

What is the basic problem? Consider the write-back cache
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CPU
Cache

CPU
Cache

CPU
Cache

Shared  bus

Shared
memoryP1 P2 P3

 0x0000

 0xFFFF

 0x00FC 13

Processor P1 requests data from address A (0x00FC). Result?
• P1 received data into its cache.  A: 13 (address:value)

Processor P2 requests data from address A (0x00FC). Result?
• The same. P2 received data from memory stores then to cache. A: 13

The processors can read/access data from A independently from 
their caches, no need for bus activity, great scalability but… 

 A: 13  A: 13

What is the basic problem? Consider the write-back cache
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CPU
Cache

CPU
Cache

CPU
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memoryP1 P2 P3

 0x0000

 0xFFFF

 0x00FC 13

Processor P1 requests data from address A (0x00FC). Result?
• P1 received data into its cache.  A: 13 (address:value)

Processor P2 requests data from address A (0x00FC). Result?
• The same. P2 received data from memory stores then to cache. A: 13

Processor P1 writes the new value into A. 31 for example.
• The value in its cache is modified.

 A: 13  A: 13
 A: 31

Processor P3 requests to read from address A. Result value?
• Memory provides 13. But processor P1 works with 31. > Incoherent

What is the basic problem? Consider the write-back cache
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CPU
Cache

CPU
Cache

CPU
Cache

Shared bus

Shared
memoryP1 P2 P3

 0x0000

 0xFFFF

 0x00FC 13

Processor P1 requests data from address A (0x00FC). Result?
• P1 received data into its cache.  A: 13 (address:value)

Processor P2 requests data from address A (0x00FC). Result?
• The same. P2 received data from memory stores then to cache. A: 13

Processor P1 writes the new value into A. 31 for example.
• The value in its cache is modified and propagates into memory.

 A: 13  A: 13
 A: 31

 31

 Processor P2 
keeps old value!!! 

Incoherent.

Processor P3 requests data from address  A. Result?
• Memory provides value 31. But P1 works with 31. > Coherent?

 A: 31

What is the basic problem? Consider write-through cache
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• The problem lies in memory incoherence:
• Processor modified (appropriately) data in its cache
• Even immediate change in main memory is not enough.
• Cache memories of other processors can keep outdated  

data. 

Important definitions:
• Memory coherence  => toady lecture

• Rules regarding access to individual memory locations
• Memory consistency => next lecture

• Rules for all memory operations in the parallel computer 
Sequential consistency: "The computer is sequentially consistent if the result of the 
execution of the program is the same as if the operations on all the processors were 
performed in sequential order and the operations of each individual processor 
appear in that sequence in the order given by their program.”

The result of the previous analysis
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•  Definition: We say that a multiprocessor memory system 
is coherent if
• the results of any execution of a program are such that for each 

location, it is possible to construct a hypothetical serial order of all 
operations (reads and writes) to the location that is consistent 
with the results of the execution and in which:

• 1. Memory operations to a given memory location for each 
process are performed in the order in which they were initiated by 
the process.

• 2. The values returned by each read operation are the values of 
the most recent write operation in a given memory location with 
respect to the serial order.

• Methods, which ensures memory coherence, are called 
coherence protocols.

Memory coherence
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Definition 1. The memory system is coherent, if

(1) preserves the order of accesses initiated by one of processors/processes P: 
Op. Read(M[x]) executed by Pi after op. Write(M[x],V1) executed by Pi, among 

which there is no other Write(M[x],V*) executed by other Pj, always returns V1.

(2) cache memories maintain coherent views: op. Read(M[x]) executed by Pi which 

follows op. Write(M[x],V1) executed by other Pj returns V1 if operations Read and 

Write are sufficiently separated (by time, barrier instructions) and any other op. 
Write(M[x],V*) to address x is not executed by other Pk in between.

(3) ensures serialization of operations Write: two ops. Write targeting same SM cell 
(address) executed by two processors are seen by all processors in the same 
order.

This definition is entirely equivalent to the definition on the previous slide. Its 
advantage is the formal definition of the terms "memory operations" and 
"serialization of write operations".

The methods for coherence are called cache coherence protocols.

The formal definition of memory coherent system 
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1. Snooping
• Snooping = spy or (bus traffic) monitoring
• Requires to supplement cache with HW which 

monitors transactions on the bus and
• Detect operation in interest,
• Actualizes state of relevant cache lines/data blocks,
• Generates memory transactions

• Protocols used in practice are MESI, MSI, MEI, MOESI, MESIF 
and some of their variants.

2. Directory-based 
• Used for larger scale systems where common shared 

bus cannot be used/implemented

Maintaining memory coherence in the multiprocessor system
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The variant where each processor knows which other processors 
have a copy of its cached data. It is too complex. Solution:
• Each cache controller snoops the bus for write operations 

relating to addresses and data which are in its cache
• Global shared bus is required to allow all cache controllers snoop 

transaction and receive operations is same order.
• The requirement for the global bus is the main problem for 

scalability.
• The variant using „Directory-based“ is better scalable.

P

cache

Main 
Memory

P

cache…

shared bus

State Address Data 

0xFFE400

…

The cache controller snoops the bus and 
tracks all transactions by address. If the 
address matches the address in its cache, it 
responds appropriately.

Bus snooping
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Snooping protocols: write-update, write-invalidate

• Write-update
• Before processor can write data, it has to acquire the 

bus. Then it sends new data. (All processors including memory 
are connected to the same bus)

• All snooping controllers actualize their data if 
address matches, and memory writes them 
unconditionally.

• The variant loads the bus heavily. It is not used.

Snooping protocols
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• Write-invalidate
• The processor writes to some address. The message 

requesting invalidation of all places keeping data for that 
address is sent.

• All snooping controllers invalidate address matching 
content in caches.

• It ensures that there is an only a single copy of data 
corresponding to the cache line written by initiating 
processor. The processor can modify cache line without 
load the bus (strategy Write allocate)..

• All other read requests initiated by other processors result 
in a cache miss, and the read request is visible on the 
bus. 

• Write-invalidate protocol requires to distinguish at least 
two states of the cache line –  valid (modified), invalid.

Snooping protocols
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• WTWNA: Invalidation protocol with only two cache-line states

PrRd 
(cache read

hit)

PrWr 
(cache write

miss)

= bus transaction

Valid

Invalid

PrRd 
(cache read

miss)

BusRd

BusWr

BusWr

PrWr
(cache write hit)

Valid

Invalid

BusWr

Local CPU Snooping CPU
Legend:

= generates 
the transaction 

on the bus

= recognizes 
operation on 

the bus

Observation: Each write 
to any address generates 
MemWrite transaction on 
bus…

PrRd – data read from given cache-line/block by processor
 PrWr – data write to given cache-line/block by processor.. 

Protocol Write Through Write No Allocate
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Example: Consider the SMP system, processor clock frequency 
f = 1.6 GHz. Executed code statistic and more parameters:
• Average IPC = 1,
• s = 15% of all instructions are Write operations,
• Each write operation stores L = 8 B.

Let is the throughput of global shared bus b = 8 GB/s. How many 
processors can be included in such a system without bus saturation?

Solution:
• Single P generates w = s*IPC*f Write operations per second
• Final bandwidth requirement of one P is r = w*L B/s.
• For our case, r=0.15*1*1.6G*8 = 1.92 GB/s
• Only four processors are satisfied even if we ignore bandwidth 

required for read miss situations

p = b/r = 8/1,92  4.

Source slides by Prof. Ing. Pavel Tvrdík, CSc.

Scalability of WTWNA protocol
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• WBWA: Invalidation protocol with only two cache-line states

PrWr
(cache write 

miss)

Valid

Invalid

Valid

Invalid

Local CPU Snooping CPU

Legenda:

Observation: Even if the 
processor only reads 
data, it has to write back 
to memory… = it writes 
back what is already in 
memory.= copy backBusRdX is RWITM – 

Read with intent to modify. 

Snooping core recognizes RWITM on 
the bus, if it has modified data, it 
aborts RWITM and writes data to 
memory (copy back). Initiating core 
repeats RWITM transaction. It is 
allowed this time and cache line state 
changes from Invalid to Valid.
Why so complicated?
Block has to be read the first 
(strategy Write Allocate) because 
data can be modified by other core
on different offset in the cache-line.
If we write the whole block, some 
bytes from snooping processor cache 
would be lost if it is in the valid state. 
That is why copy-back is required 
before invalidation.

PrRd 
(cache read

hit)

PrRd 
(cache read

miss)

BusRd

PrWr
(cache write hit)

BusRdX

BusRdX

Write Back Write Allocate protocol
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Example: Consider SMP with clock f = 1.6 GHz and next parameters:
• Average IPC = 1,
• sW = 10% of all operations are Write operations, sR = 10% operations Read

• Each Write operations stores block of size L = 64 B (cache line size).
• The program ran on given CPU results in read cache miss rate MR = 2%, and write 

cache miss rate MW = 3%, misses are distributed equally.

• Consider, that extending of the system by each other CPU results only in a constant 
value increase of write cache miss rate: d=1%.

Global bus bandwidth is b = 8 GB/s. How many processors can be included in the 
system without a saturation situation?

Solution:
• Single P generates wW = sW*IPC*f Write operations per second and wR = sR*IPC*f 

Read operations per second, it is total w = wW+wR operations per second.

• Complete required bandwidth for single P case is r1 = (wW*MW + wR*MR)*L B/s.

• Write miss rate increases if N processors are used: MW,N = MW + d*(N-1).

• Aggregated bandwidth required for N processors is  rN = N*(wW*MW,N + wR*MR)*L B/s.

• If bandwidth required for other transactions is ignored then

N = b/rN, after N evaluation and parameters substitution N=7 processors.

WBWA protocol scalability
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• It is the protocol which minimizes multiprocessor system bus 
transactions in the case of invalidation operations.

• It is based on write-back; cache lines modification does not generate 
subsequent bus write transactions until there is an attempt to modify 
the corresponding cache-line on other CPU. Then write back occurs.

• Requires to extend cache-line flags (meta-data). Invalid and Dirty/Valid 
has been considered till now. 

• Each cache line occurs in one of 4 states (2 bits are 
enough for encoding)
• M – Modified. Cache-line content differs from data in 

corresponding memory cells, (it is equivalent to Dirty state),
• E – Exclusive. Line content is in exactly only one processor 

cache and is the same as corresponding memory cells. 
• S – Shared. Line content is the same as corresponding 

memory, but content can be kept in multiple cache memories.
• I – Invalid. The cache line is not used, no valid content or tag.

MESI protocol
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• Required actions are comprehensively summarized by 
the state diagram of transitions. It defines what happens 
with cache-line of the processor in a role of
• accessing memory (read hit/miss, write hit/miss)
• snooping processor which evaluates address/line 

match with accessing processor (Mem read, RWITM = 

Read With Intent To Modify, Invalidate).  
• Operations of the local processor:

• Read Hit (read value is available to the processor)
• Read Miss (value is not in cache, bus transaction 

required)
• Write Hit (successful write)
• Write Miss (the corresponding line is not in the cache, 

bus transaction is required)

MESI
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MESI – Local processor

Invalid

Modified Exclusive

Shared

BusRdX 
(RWITM)

BusUpgr 
(Invalidate)

BusRd

BusRd

= bus transaction

PrRd 
(cache read

hit)

PrRd 

PrWr

PrRd 

PrWr
(cache write hit)

PrWr
(cache write hit)

PrWr
(cache write hit)

PrRd 
(cache read

hit)

PrRd 
(cache read

hit)

The decision, which edge is followed, is done after snoop interval 
expiration (snoop done) when it is sure that no copy exists in 
another cache. Can be implemented by additional bus signal
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= copy back

The snooping 
processor 

recognizes RWITM, 
blocks it and writes 
data (copy back). 
Initial processor 
restarts RWITM.

The snooping processor recognizes invalidate 
or RWITM and state invalid is entered.

Invalid

Modified Exclusive

Shared

BusRd

BusRd
BusRd

Invalidate or BusRdX (RWITM)

BusRdX 
(RWITM)

BusRdX 
(RWITM)

MESI – Snooping processor
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Shared
memoryCPU

Cache

P1

 13

Initial state.

A: ?, I

 A:
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A: ?, I
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M E
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 BusRdX 
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 BusRd

Example – MESI protocol

Local 
CPU

Snooping CPU
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Shared
memoryCPU

Cache

P1

 13

Processor P1 requests read from address A. 
• P1 send PrRd(A) to its cache controller, but the 

line is ale Invalid, i.e., read miss occurs.
• Cache controller needs to read data from memory 

– issues BusRd(A) request.
• None of snooping cache controllers evaluates 

match, no line data copy in other  caches.
• When memory delivers data which fill cache line 

in requesting processor P1 and line state is 
changed according to edge  I->E.

A:13, E

 A:
CPU
Cache

P2

A: ?, I

CPU
Cache

P3

A: ?, I

PrWr

I

M E

S

BusRdX 

BusUpg

BusRd

BusRd

PrRd

PrRd 

PrWr
PrRd 

PrWr

PrWr
PrRd

PrRd

I

M E

S

BusRd

BusRd

BusUgr, BusRdX

 BusRdX 

BusRdX 

S=0S=0

 BusRd

Example – MESI protocol

CPU P1

No match in any 
snooping CPU
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Shared
memoryCPU

Cache

P1

 13

Processor P2 requests read from address  A. 
• P2 sends PrRd(A) to its cache, but the line is 

Invalid, i.e., read miss occurs.
• P2 cache controller sends BusRd(A) to the bus.
• Snooping cache controller of P1 indicates that it 

has data copy in its cache (asserts signal S=1) 
aborts read request and delivers data from the 
cache.

• Both processors/cache controllers advance to 
state S. (P1: E->S;  P2: I->S)

A:13, S

 A:
CPU
Cache

P2

A:13, S

CPU
Cache

P3

A: ?, I

PrWr

I

M E

S

BusRdX 

BusUpg

BusRd

BusRd

PrRd

PrRd 

PrWr
PrRd 

PrWr

PrWr
PrRd

PrRd

I

M E

S

BusRd

 BusRd

BusRd

BusUgr, BusRdX

 BusRdX 

BusRdX 

S=0S=1

Example – MESI protocol

CPU P2

CPU P1
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Shared
memoryCPU

Cache

P1

 13

Processor P1 writes a new value to 
address A. For example 31. 
• P1 send PrWr to cache. But block is in the S state. 
• Cache controller sends BusUpgrade(A).
• All snooping cache controllers (in the example 

only one) recognize match with BusUpgrade(A) 
and activate edge S->I. 

• Memory is not updated.
• P1 cache-line state changes S->M and write is 

finished.

A:31,M

 A:
CPU
Cache

P2

A:13, I

CPU
Cache

P3

A: ?, I

PrWr

I

M E

S

BusRdX 

BusUpg

BusRd

BusRd

PrRd

PrRd 

PrWr
PrRd 

PrWr

PrWr
PrRd

PrRd

I

M E

S

BusRd

 BusRd

BusRd

BusUgr, BusRdX

 BusRdX 

BusRdX 

Example – MESI protocol

CPU P1

CPU P2
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Shared
memoryCPU

Cache

P1

 31

Processor P3 reads data from address A. 
Which value does it read?
• P3 sends PrRd(A) to its cache, but the line is 

Invalid. Cache controller responds by sending 
BusRd(A).

• Snooping cache controller of P1 indicates the 
match, asserts signal S=1 and delivers data from 
its cache to the bus and that way to P3.

• Both change state to S. (P1: M->S;  P3: I->S)
• There is copy-back at M->S edge. Memory is 

updated. 

 A:
CPU
Cache

P2

CPU
Cache

P3

PrWr

I

M E

S

BusRdX 

BusUpg

BusRd

BusRd

PrRd

PrRd 

PrWr
PrRd 

PrWr

PrWr
PrRd

PrRd

I

M E

S

BusRd

 BusRd

BusRd

BusUgr, BusRdX

 BusRdX 

BusRdX 

A:31,S A:13, I A:31,S

Example – MESI protocol

CPU P3

CPU P1
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Shared
memoryCPU

Cache

P1

 31

Processor P2 writes data to address A. 
Value 42 for example. 
• P2 send PrWr(A) to its cache, but the line is 

Invalid. Cache controller issues BusRdX(A).
• Snooping controllers indicate that they have data 

copy. Abort memory read request, and some of 
the controllers deliver data.

• Both snooping controllers follow edge do S->I. 
• Data requesting P2 follows edge I->M.
• Memory is not updated.

 A:
CPU
Cache

P2

CPU
Cache

P3

PrWr

I

M E

S

BusRdX 

BusUpg

BusRd

BusRd

PrRd

PrRd 

PrWr
PrRd 

PrWr

PrWr
PrRd

PrRd

I

M E

S

BusRd

 BusRd

BusRd

BusUgr, BusRdX

 BusRdX 

BusRdX 

A:31,I A:42,M A:31,I

S=1S=1

Example – MESI protocol

CPU P2

CPU P1
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• If the cache line is in E (Exclusive) state, then there is no 
need to send any bus transaction (for both read or write)

• State changes of cache-line occur during Read and or 
Write events (memory access)

• The event is caused by
• Cache controller local/connected processor 

activity/code execution (cache access), or
• As a result of successful bus snooping (address 

matching) of other processor initiated bus activity.
• Changes of cache-line state occur only in the cache of the 

corresponding transaction and cache-line address 
(index+tag+address) match.

Remarks to simplify implementation
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hit/miss

end

Send read request 
to bus and main 

memory

Is there
a copy 

in some of 
caches?

hit

miss

read
1. Store data from 
main memory into 
the cache
2. change state to E

end
No copy

What is 
state of 

snooping 
cache?1. Abort request to 

read from main 
mem.

2. Deliver data from 
cache to the bus

3. Both caches change 
state to S

end

1. Abort request to read 
from the main mem.

2. Deliver data from the 
cache to the bus; it 
allows to update main 
memory as well

3. Both caches change 
state to S

end

1 copy

1. Abort request to read 
from the main mem.

2. Deliver data from the 
cache to the bus 
(any of caches)

3. Both caches change 
state to S

end

Multiple copies = shared

modifiedexclusive

Summary of previous slides – Read
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hit/miss

hit

miss

write

… 

Summary of previous slides – Write
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• Systems based on Broadcast (snooping) can be practically scaled to 
about 8-10 nodes where each node can be multicore processor 
today

• Option for more processors is hierarchical Hierarchical Snooping.
• But shared buses are generally replaced by point-to-point 

interconnection (on next slides) → snooping is not so much important 
today.  

P

cache

Main 
Memory

Snooping 
Adapter

P

cache…

P

cache

Main 
Memory

Snooping 
Adapter

P

cache…

…

Broadcast domain 1 Broadcast domain 2

Snooping  Adapter
Separates buses

Broadcast extension/scaling for more processors
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• Classical bus limitation … 
Problem: increase bus 
frequency. Important: Bus 
ensures serialization of all 
requests (access arbitration 
used) – any two processors 
cannot modify the same cache-
line in the same instant of time

• Two independent buses – DIB 
(dual independent buses). 
Snoop principle has to be 
preserved. If all traffic is 
propagated, throughput is 
degraded. That is why snoop 
filter filters requests and stores 
snoop information and does not 
propagate irrelevant 
transactions

P
cache

P
cache

P
cache

P
cache

Chipset

Memory 
interface I/O

about 4.2GB/s

Year 
2004

P
cache

P
cache

P
cache

P
cache

Memory 
interface I/O

Year 
2005

Chipset

Snoop filter
about 12.8GB/s

Development inside of processor as a chips/packages
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• Introduction high-speed 
point-to-point  
interconnects. But snoop 
filter becomes the 
bottleneck of the system. It 
is too centralized. 

• Ring. Single direction ring (in 
the picture) – all messages are 
delivered between nodes in the 
same direction and node order 
is fixed. Two single direction 
links placed in opposite 
direction form bidirectional ring 
often used today. Ring routers 
can be simple – same as on 
roundabout which is left by a 
car when you need/reach the 
target node direction.

Year 
2007

P
cache

P
cache

P
cache

P
cache

Memory 
interface I/O

2009 
till
today

Chipset

Snoop filter

about 34GB/s

P
cache

P
cache

P
cache

P
cache

P
cache

P
cache

P
cache

P
cache

Chipset

Memory 
interface

I/O

Development inside of processor as a chips/packages
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 Example: Intel Itanium Processor 9500
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• Interconnected rings. Even 
single package multi-
processor  becomes NUMA 
system.

• The ring offers fast point-to-
point interconnection and 
removes the complexity of 
packed oriented 
interconnections with general 
topology. Routing in each node 
is simple – includes only single 
input and output port for each 
ring. Nodes can insert and or 
remove message thanks to 
distributed arbitration. But the 
ring does not ensure global 
ordering of events (which is 
natural on the bus) – order 
depends on observer 
position… => Greedy snooping 
(IBM Power4/5), everything to 
everybody or  selective with 
use of Directories.

(2013) 
till
today
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cache

P
cache

P
cache
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cache
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cache
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Memory 
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Ring 
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Ring 
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Development inside of processor as a chips/packages
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caching 
agent

Practical example: Broadwell-EP (Intel Xeon) 
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Broadwell-EP uses next means to speedup „snooping“ and lowering 
communication load:

• Directory Cache – it is 14KB cache each HA (home agent). It stores 
8-bit vector which informs which CA (caching agent) can deliver a copy of 
cache-line. Directory cache is integrated into the chip. Directory cache hit 
means whom we should ask to provide data for the given address.

• Directory – the directory is placed in the memory controller and 
requires only 2 bits (directory bits) for each block (cache line) – states 
Local/Invalid, SnoopAll, Shared. The directory is consulted only in case of 
Directory cache miss.

Remarks:
• Directory cache extension to DAS protocol. Speedups access to cache lines, 

which are (re)sent from the cache of other nodes.
• Directory assisted snoop broadcast protocol (DAS) is the extension of 

commonly used MESIF protocol (F state means Forwarding – i.e., who is 
responsible for forwarding). DAS uses the directory to store auxiliary information. 
It reduces the number of queries to HA that way.

Practical example: Broadwell-EP (Intel Xeon) 
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• Example: AMD Quad – Coherent HyperTransport
• Instead of a bus HT (AMD) or QPI (Intel) is used
• Example of interconnection of four multi-core processors:

How to snoop without a shared bus?
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Example: CPU1 reads memory location which is homed in CPU3 (it is in 
memory controlled by P3 memory controller)

Unordered 
interconnect

P3

cache

ME
M

P0

cache

ME
M

P2

cache

ME
M

P1

cache

ME
M

Read cache line

P3

cache

ME
M

P0

cache

ME
M

P2

cache

ME
M

P1

cache

ME
M

Read 
cache 
line

• Reaction on last-level cache miss: query  
sent to the home node

• This memory controller decides order (of 
processing) of all queries to the same 
cache line 

• There is no direct connection between 
P1 and P3. Querry is set over P2.

How to snoop without a shared bus? Broadcast protocol.

Step 1 Step 2
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P3

cache

ME
M

P0

cache

ME
M

P2

cache

ME
M

P1

cache

ME
M

P3

cache

ME
M

P0

cache

ME
M

P2

cache

ME
M

P1

cache

ME
M

Read 
cache line

Probe 
request 2

Probe 
request 0

Probe 
request 3

Probe 
response 3

Probe 
request 1

• When query reaches home node and 
starts to be served, cache probes 
requests are sent to all processors and 
access to RAM is initiated in parallel

• All processors send probe responses 
(immediately as they obtain them) to 
querying processor  – P1.

• Memory controller also sends message, 
when data from RAM are available – step 5

Step 3 Step 4

Example: CPU1 reads memory location which is homed in CPU3 (it is in 
memory controlled by P3 memory controller)

How to snoop without a shared bus? Broadcast protocol.
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P3

cache

ME
M

P0

cache

ME
M

P2

cache

ME
M

P1

cache

ME
M

P3

cache

ME
M

P0

cache

ME
M

P2

cache

ME
M

P1

cache

ME
M

Probe 
response 3

Probe 
response 0

Read response

Read 
response

Probe 
response 2

• Querying processor P1, collect 
responses from all processors in time as 
they arrive

Example: CPU1 reads memory location which is homed in CPU3 (it is in 
memory controlled by P3 memory controller)

How to snoop without a shared bus? Broadcast protocol.

Step 5 Step 6
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P3

cache

ME
M

P0

cache

ME
M

P2

cache

ME
M

P1

cache

ME
M

P3

cache

ME
M

P0

cache

ME
M

P2

cache

ME
M

P1

cache

ME
M

Read 
response

Source 
done

• As requesting processor receives all responses, 
it sends the message to home node which 
informs that cache line request is handled then 
home node (memory controller) can service next 
request to the same cache-line.

Read response

Example: CPU1 reads memory location which is homed in CPU3 (it is in 
memory controlled by P3 memory controller)

Step 7 Step 8

How to snoop without a shared bus? Broadcast protocol.
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P3

cache

ME
M

P0

cache

ME
M

P2

cache

ME
M

P1

cache

ME
M

Source 
done

• Notice complexity of communication for 
single read?

• Next generation of AMD processors 
included HT assist (HyperTransport Assist 
directory protocol) – about 2010 year.

• HT assist uses directory (in the home 
node) which maintains information which 
cache-lines are cached in another CPUs

• It allows reducing inter-processor 
communication significantly. Instead of the 
previous broadcast to all processors, next 
3 cases can appear:

• no probe – data only in RAM, nobody else 
• directed probe (query to single CPU only) 

– it is not in RAM only one has the line
• broadcast probe – fallback case

How to snoop without a shared bus? Broadcast protocol.

Read response

Example: CPU1 reads memory location which is homed in CPU3 (it is in 
memory controlled by P3 memory controller)

Step 9
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Source: Conway, P., Kalyanasundharam, N. et al.: 
Cache hierarchy and memory system of the AMD 
Opteron processor, IEE Micro, March/April 2010.

•  Probe Filter  (HT Assist) – uses 
part of L3 cache as directory 
cache in which it monitors cached 
lines. Instead of generating many 
requests (cache probes), 
processor searches this part of L3 
cache.

P3

cache

ME
M

P0

cache

ME
M

P2

cache

ME
M

P1

cache

ME
M

This is the case of AMD Quad – Coherent HyperTransport
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• Sending information to everyone else (or listening to all) is not a scalable 
solution ...

• We noticed that removing buses (where monitoring/snooping is not a 
problem) and by the change to the point-to-point interconnection 
between CPU cores (nodes) and the increase in the number of cores, the 
solution how to “snoop” but not burden the system with excessive 
communication becomes crucial.

• Directories
(More projects aiming to solve problems related to shared memory started 

by end of 80. and start of 90. years. One of then was “SCI” (Scalable 
Coherent Interface) -  HP, Apple, Data General, Dolphin, US Navy,.. The 
next one was “DASH” – Stanford. Both use similar technologies – 
directory-based cache coherence architecture.

• This approach is suitable for interconnection of hundreds and or 
thousands of processors.

• Directories use is not a new idea. The new is only that their use has 
spread even to today's common desktop CPUs.

When the bus is not enough and broadcast to all is limiting
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•  Support cache coherence in HW (directory-based)
•  Max. 4096 nodes. One node: 4 processors (on left-top picture)
•  node: 16 DIMM sockets x 32 GB = max. 512 GB
•  Max. 256 TB total memory. Limited by 48-bit physical address-space of CPU

•  Example: 4GB Cache, 8 GB Tag (supports 240 GB Local Node RAM)

Processors
(16/12/8/4-

Core ready)

HyperTransport connection 
on motherboard (+PCIe)

Numascale 
SMP adapter

Connectors to connect 
other nodes

Example from practice – Numascale



56B4M35PAP Advanced Computer Architectures

• 2D torus – each node with 4 neighbors
• 3D torus – each node with 6 neighbors
• Max. 4096 nodes x 4 processor/node = 16 384 multi-core processors
• The program, which is written to run on a single node, can run on the whole 

system without change if written with scaling in mind (OpenMP, MPI, Threads)

2D toroid

3D toroid

Nodes 
interconnected by 

2D torus 

Example from practice – Numascale – Nodes interconnection
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• If broadcast (multicast) cannot be easily realized (not a bus)

• Core idea: Introduce Directory, which remembers for each 
line-block of memory:
• If it is in the cache (at least one)
• In which cache(s) it is present
• If it is clean or dirty in the cache

Directory Shared Memory
Physical 
Memory 
in the 
first 
node

Block size

…
…

P

cache

Main 
Memory

Comm 
Assist

Dir

P

cache

Main 
Memory

Comm 
Assist

Dir

Scalable interconnection network

Back to Directory solution from beginning … 
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• Full directory remembers complete information for each line of the 
memory. For n processor system it is a Boolean vector of length n+1. If 
bit i (i=1,2,…n) is set then corresponding (i) cache holds a copy of the 
line. Bit 0 indicates if the line is in the clean or dirty state (only one other 
bit can be set for dirty state = line is only in one cache)

• In NUMA system, each node implement only part of the 
directory with information corresponding to that lines which 
are stored in its memory = home node; the rest are remote 
nodes for this part of memory.

• For cache miss case, the request is sent only to the home 
node 

• Full directory – disadvantage to big directory size. 
Example: for 8 processor system with L3 cache line size 64 B 
(consideration: coherence resolved at level L3), directory size is 2% 
(9/(64*8)=0.018) of the capacity of shared memory, but for 64 
processors it is 13% (65/(64*8)=0.127). Bad scalability for thousands of 
processors.

Directory
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• Consider K processors. Each memory line/block 
is equipped by 1 Dirty-bit, K Presence-bits.

Read block by processor „i“ (after a read miss):
• If dirty-bit OFF the { read from main memory; set 

p[i] ON; }
• If dirty-bit ON then { request/stole the dirty line 

from the corresponding processor, update 
memory; set dirty-bit OFF; set p[i] ON; send data 
to processor I }

Write to memory by processor „i” (after write 
miss):

• If dirty-bit OFF then { send invalidation to all 
shared copies; send data to i, clear all p[j] in the 
directory and set only p[i] to ON; dirty bit ON; }

• If dirty-bit ON then {acquire (with invalidation) 
block from the corresponding processor; its p[j] 
bit clear; set p[i] to ON – only for new dirty node}

• Remark 1: If bit dirty is ON, then only one node (dirty node) 
can cache given block, and only single presence bit is ON

• Remark 2: Each block in the cache has: MESI, MOESI, 
another state corresponding to coherence solution between 
multiple cores/processors on the given node with common L3 
cache.

P

Cache

Comm. 
assist

MEM 
+dir

Interconnection network

P

Cache

Comm. 
assist

MEM 
+ dir

P

cache

P

cache…

Interconnection Network

o   o             o      

Memory

Directory

Presence 
bits

Dirty 
bit

Memory block

UMA

NUMA

Example of Full directory realization
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• CC-NUMA with Directories is the solution for large scale systems – 
Directory-Based CC-NUMA (Cache-Coherent NUMA).

• Directory and memory are distributed between nodes. 
• Example SGI Origin2000 – 512 nodes x 2 processors = 1024 x MIPS 

R10K 
• The idea is based on the fact that information about the state of each 

block is available (maintained). This information is stored in the 
directory. Broadcast are not necessary for such case, and a limited 
number of point-to-point transactions is necessary for each miss.

• The home node is that node which memory contains required data, 
other nodes are remote nodes for that address range.

• Number of shared copies is usually small even in large systems, 
and this ensures significant communication reduction when 
compared with Broadcast based solution.

• The price to pay is requirement to include additional resource – 
address (Directory): 4GB node, block 128B, 256 processors => 
Directory size per node 32 M x 256b (bit-map) = 256 MB.

Full directories use
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All of them related to each block in memory or cache:
• Home node – node which provides given memory block – 

where it is allocated and corresponding memory 
connected

• Dirty node – node which owns a copy of given memory 
block in its cache in the modified state (M) 

• Owner node – node with valid memory block copy in its 
cache and is responsible for delivering data when they 
are requested (can be home or dirty node) (M, O, E)

• Local node – requester for data: node witch send the 
request to shared or exclusive access to the memory 
block

• Remote node – all other nodes which than local node for 
the given memory block

Definitions
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More detailed directory supported operations
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How to find where is the part of directory corresponding to 
the given memory block address?
• The most common is Flat Directory where this part of the directory is 

placed on fixed location – usually on home node. It can be 
obtained/derived directly from block address (address from which CPU 
wants to read or write)

• Other option hierarchical directory where memory is distributed between 
nodes usual way, but the directory is stored in form tree (logic structure). 
Nodes (processors) are located in tree leaves, and nodes of the tree keep 
information about given block: if its children have or do not have the copy 
of the block. The cache miss is then realized as walking through the tree in 
the direction to parents. In practice, tree nodes are distributed between 
system nodes (processors) and each miss generates usually multiple 
transactions between system nodes before required information is found.

• Centralized directory – advantage – a single place to send queries – can 
be used only for small systems – the example is coherency maintenance 
inside multi-core processors (in the fact inclusive cache hierarchy fall 
between central and tree solution). Such node can be a member of the 
larger system.

Directory Storage Schemes
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• Flat directory - Memory based – a record for a dirty node or all sharing nodes is 
kept in the home node (record in memory). The example is discussed the full-
directory solution. An alternative is the solution where remote nodes 
(processors) are recorded by their number instead of the bitmap (number of 
sharing nodes is then limited – usual situation). The system has to be prepared 
for the situation when a number of remote nodes requesting single block is 
above the limit (example solution is forced invalidation in remote cache on 
oldest age basis …)

• Flat directory - Cache based – the record in home node does not keep 
information about all sharing nodes but the only pointer to the first sharing node 
is kept (plus state bits). Records about additional sharing nodes are stored in 
distributed bidirectional linked list (its entries in remote caches). The second and 
additional sharing nodes are found by iteration over the list. Cache which 
contains the copy of the block stores pointer to next and previous node as well.

Flat    Hierarchical      Centralized

Memory-based Cache-based

Directory Storage Schemes
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• IEEE standard SCI
• Scalable Coherent Interface
• The protocol based on rules for enlisting and removal of entries from 

linked list… for example used in SEQUENT NUMA Q, Convex 
Exemplar.

Distributed directory – bidirectional linked list of sharing nodes
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• Directory-directory
• Alternatives: Snooping-Snooping, Snooping-Directory, Directory-Snooping
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Interconnection network
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Cache
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MEM 
+ dir

Directory 
Adapter

Interconnection network 2

Two-level cache coherent system
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• The basic solution for coherence maintenance is snooping – 
protocol MESI or newer MESIF (better for point-to-point 
interconnect)

• Snooping request message are used today instead of 
snooping on the shared bus due to change to point-to-point 
interconnect – typically ring, or 2D mesh

• Directories are used today for larger systems (>8 nodes)  
• Hybrid and hierarchical solutions – snoop+directory systems
• Programmer model and competence are still significant for the 

development of scalable solutions using multiprocessors.
• Debugging and performance tuning is not easy.
• Large scale multiprocessor systems typically ensure memory 

coherence in individual computational nodes (more multi-core 
CPUs) – OpenMP. Data exchange in the cluster of nodes is 
under programmer control – MPI (Message Passing Interface). 
=> Combination of OpenMP + MPI.

Summary and conclusions
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