Pseudorandom numbers

John von Neumann:

Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin.
For, as has been pointed out several times, there is no such thing as a random number

- there are only methods to produce random numbers, and a strict arithmetic procedure of course is not such a method.

[^0]
Pseudorandom number generator

Random vs. pseudorandom behaviour

Random behavior -- Typically, its outcome is unpredictable and the parameters of the generating process cannot be determined by any known method.
Examples:
Parity of number of passengers in a coach in rush hour.
Weight of a book on a shelf in grams modulo 10.
Direction of movement of a particular N_{2} molecule in the air in a quiet room.

Pseudo-random
-- Deterministic formula,
-- Local unpredictability, "output looks like random",
-- Statistical tests might reveal more or less "random behaviour"

Pseudorandom integer generator
A pseudo-random integer generator is an algorithm which produces a sequence

$$
\left\{x_{n}\right\}=x_{0}, x_{1}, x_{2}, \ldots
$$

of non-negative integers, which manifest pseudo-random behaviour.

Pseudorandom number generator

Pseudorandom integer generator

Two important statistical properties:

- Uniformity
- Independence

Random number in a interval $[a, b]$ must be independently drawn from a uniform distribution with probability density function:

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{b-a+1} & x \in[a, b] \\
0 & \text { elsewhere }
\end{array}\right.
$$

Good generator

- Uniform distribution over large range of values:

Interval $[a, b]$ is long, period $=b-a+1$, generates all integers in $[a, b]$.

- Speed

Simple generation formula.
Modulus (if possible) equal to a power of two - fast bit operations.

Pseudorandom number generator

Random floating point number generator

Task 1: Generate (pseudo) random integer values from an interval $[a, b]$.
Task 2: Generate (pseudo) random floating point values from interval [0,1[.
Use the solution of Task 1 to produce the solution of Task 2.
Let $\left\{x_{n}\right\}$ be the sequence of values generated in Task 1.
Consider a sequence $\left\{y_{n}\right\}=\left\{\left(x_{n}-a\right) /(b-a+1)\right\}$.
Each value of $\left\{y_{n}\right\}$ belongs to [0,1[.
"Random" real numbers are thus approximated by "random" fractions.
Large length of $[a, b]$ guarantees sufficiently dense division of $[0,1[$.

Example 1

$$
\begin{aligned}
{[a, b] } & =[0,1024] . \\
\left\{x_{n}\right\} & =\{712, \quad 84, \quad 233, \quad 269, \quad 810, \quad 944, \ldots\} \\
\left\{y_{n}\right\} & =\{712 / 1023,84 / 1023,233 / 1023,269 / 1023,810 / 1023,944 / 1023, \ldots\} \\
& =\{0.696,0.082,0.228,0.263,0.792,0,923, \ldots\}
\end{aligned}
$$

Linear Congruential Generator

Linear congruential generator

Linear congruential generator produces a sequence $\left\{x_{n}\right\}$ defined by relations

$$
\begin{aligned}
& 0 \leq x_{0}<M \\
& x_{n+1}=\left(A x_{n}+C\right) \bmod M, \quad n \geq 0
\end{aligned}
$$

Modulus M, seed x_{0}, multiplier and increment A, C.

Example 2

$$
\begin{aligned}
& M=18, A=7, C=5 \\
& x_{0}=4 \\
& x_{n+1}=\left(7 x_{n}+5\right) \bmod 18, \quad n \geq 0
\end{aligned}
$$

$$
\left\{x_{n}\right\}=\underbrace{4,15,2,1,12,17,16,9,14,13,6,11,10,3,8,7,0,5}, 4,15,2,1,12,17,16, \ldots
$$

sequence period, length $=18$

Linear Congruential Generator

Example 3

$$
\begin{aligned}
& M=15, A=11, C=6 . \\
& x_{0}=8 \\
& x_{n+1}=\left(11 x_{n}+6\right) \bmod 15, \quad n \geq 0 .
\end{aligned}
$$

$$
\left\{x_{n}\right\}=\underbrace{8,14,5,11,2,}, 14,5,11,2,8,14, \ldots
$$

sequence period, length $=5$
Example 4

$$
\begin{aligned}
& M=13, A=5, C=11 \\
& x_{0}=7 \\
& x_{n+1}=\left(5 x_{n}+11\right) \bmod 13, \quad n \geq 0 .
\end{aligned}
$$

$$
\left\{x_{n}\right\}=7,7,7,7,7, \ldots
$$

لها
sequence period, length = 1

Linear Congruential Generator

Misconception

Prime numbers are "more random" than composite numbers, therefore using prime numbers in a generator improves randomness.
Counterexample: Example 4, all parameters are primes:

$$
x_{0}=7, \quad x_{n+1}=\left(5 x_{n}+11\right) \bmod 13 .
$$

Maximum period length

Hull-Dobell Theorem:
The lenght of period is maximum, i.e. equal to M, iff conditions 1. - 3. hold:

1. C and M are coprimes.
2. $A-1$ is divisible by each prime factor of M.
3. If 4 divides M then also 4 divides $A-1$.

Example 5

1. $M=18, A=7, C=6$. Condition 1. violated
2. $M=20, A=17, C=7$. Condition 2. violated
3. $M=17, A=7, C=6$. Condition 2. violated
4. $M=20, A=11, C=7$. Condition 3. violated
5. $M=18, A=7, C=5$. All three conditions hold

Linear Congruential Generator

Randomness issues

$$
\left.\begin{array}{ll}
\text { Example } 6 & \begin{array}{c}
x_{0}=4, \\
x_{n+1}=\left(7 x_{n}+5\right) \bmod 18, \quad n \geq 0 .
\end{array} \\
\left\{x_{n}\right\}=\underbrace{4,15,2,1,12,17,16,9,14,13,6,11,10,3,8,7,0,5,4,15,2,1,12,17,16, \ldots}_{\text {sequence period, length }=18}
\end{array}\right\}
$$

Trouble

Low order bits of values generated by LCG exhibit significant lack of randomness.
Remedy
Disregard the lower bits in the output (not in the generation process!).
Output the sequence $\left\{y_{n}\right\}=\left\{x_{n}\right.$ div $\left.2^{H}\right\}$, where $\mathrm{H} \geq 1 / 4 \log _{2}(\mathrm{M})$.

Linear Congruential Generator

Examples of LCGs in common use

Source	modulus m	multiplier a	increment c	output bits of seed in rand() or Random(L)
Numerical Recipes	2^{32}	1664525	1013904223	
Borland C/C++	2^{32}	22695477	1	bits $30 . .16$ in rand(), $30 . .0$ in Irand()
glibc (used by GCC) ${ }^{[15]}$	2^{31}	1103515245	12345	bits $30 . .0$
ANSI C: Watcom, Digital Mars, CodeWarrior, IBM VisualAge C/C++ [16] C90, C99, C11: Suggestion in the ISO/IEC 9899, ${ }^{[17]}$ C18	2^{31}	1103515245	12345	bits $30 . .16$
Borland Delphi, Virtual Pascal	2^{32}	134775813	1	bits $63 . .32$ of (seed $\times L$)
Turbo Pascal	2^{32}	134775813 (808840516)	1	
Microsoft Visual/Quick C/C++	2^{32}	214013 (343FD ${ }_{16}$)	2531011 (269EC3 ${ }_{16}$)	bits $30 . .16$
Microsoft Visual Basic (6 and earlier) ${ }^{[18]}$	2^{24}	1140671485 (43FD43FD ${ }_{16}$)	12820163 (C39EC3 $_{16}$)	
RtIUniform from Native AP[${ }^{[19]}$	$2^{31}-1$	2147483629 (7FFFFFED ${ }_{16}$)	2147483587 (7FFFFFC3 ${ }_{16}$)	
Apple CarbonLib, C++11's minstd_rando [20]	$2^{31}-1$	16807	0	see MINSTD
C++11's minstd_rand [20]	$2^{31}-1$	48271	0	see MINSTD
MMIX by Donald Knuth	2^{64}	6364136223846793005	1442695040888963407	
Newlib, Musl	2^{64}	6364136223846793005	1	bits $63 . .32$
VMS's MTH\$RANDOM, ${ }^{[21]}$ old versions of glibc	2^{32}	69069 (10DCD ${ }_{16}$)	1	
Java's java.util.Random, POSIX [In]rand48, glibc [In]rand48[r]	2^{48}	25214903917 (5DEECE66D ${ }_{16}$)	11	bits $47 . .16$
randome [22][23][24][25][26]	$134456=2^{37}{ }^{5}$	8121	28411	$\frac{X_{n}}{134456}$
POSIX ${ }^{[27]}$ [jm]rand48, glibc [mj]rand48[r]	2^{48}	25214903917 (5DEECE66D ${ }_{16}$)	11	bits $47 . .15$
POSIX [de]rand48, glibc [de]rand48[r]	2^{48}	25214903917 (5DEECE66D ${ }_{16}$)	11	bits 47..0
cc65 ${ }^{[28]}$	2^{23}	65793 (10101 ${ }_{16}$)	4282663 (415927 ${ }_{16}$)	bits 22.. 8
cc65	2^{32}	16843009 (1010101 ${ }_{16}$)	826366247 (31415927 ${ }_{16}$)	bits $31 . .16$
Formerly common: RANDU [9]	2^{31}	65539	0	

Sequence period

Many generators produce a sequence $\left\{x_{n}\right\}$ defined by the general recurrence rule

$$
x_{n+1}=f\left(x_{n}\right) \quad n \geq 0 .
$$

Therefore, if $x_{n}=x_{n+k}$ for some $k>0$, then also

$$
x_{n+1}=x_{n+k+1}, x_{n+2}=x_{n+k+2}, x_{n+3}=x_{n+k+3}, \ldots
$$

Sequence period

Subsequence of minimum possible length $p>0,\left\{x_{n}, x_{n+1}, x_{n+2}, \ldots x_{n+p-1}\right\}$ such that for any $n \geq 0$: $\quad x_{n}=x_{n+p}$.

Combined Linear Congruential Generator

Definition

Let there be r linear congruential generators defined by relations

$$
\begin{aligned}
& 0 \leq y_{k, 0}<M_{k} \\
& y_{k, n+1}=\left(A_{k} y_{k, n}+C_{k}\right) \bmod M_{k}, \quad n \geq 0 \\
& 1 \leq k \leq r
\end{aligned}
$$

The combined linear congruential generator is a sequence $\left\{x_{n}\right\}$ defined by

$$
x_{n}=\left(y_{1, n}-y_{2, n}+y_{3, n}-y_{4, n}+\ldots(-1)^{r-1} \cdot y_{r, n}\right) \bmod \left(M_{1}-1\right), \quad n \geq 0
$$

Fact Maximum possible period length (not always attained!) is

$$
\left(M_{1}-1\right)\left(M_{2}-1\right) \ldots\left(M_{r}-1\right) / 2^{r-1} .
$$

Example $7 \quad \mathrm{r}=2, \quad 1 \leq y_{1,0} \leq 2147483562, \quad 1 \leq y_{2,0} \leq 2147483398$

$$
\begin{array}{rlr}
y_{1, n+1} & =\left(40014 y_{1, n}+0\right) \bmod 2147483563, & n \geq 0 \\
y_{2, n+1} & =\left(40692 y_{2, n}+0\right) \bmod 2147483399, & n \geq 0 \\
x_{n} & =\left(y_{1, n}-y_{2, n}\right) \bmod 2147483562, & n \geq 0 .
\end{array}
$$

Period length is $\frac{\left(M_{1}-1\right)\left(M_{2}-1\right)}{2}=2305842648436451838$.

Combined Linear Congruential Generator

Example $8 \quad \mathrm{r}=3, \quad y_{1,0}=y_{2,0}=y_{3,0}=1$,

$$
\begin{array}{ll}
y_{1, n+1}=\left(9 y_{1, n}+11\right) \bmod 16, & n \geq 0, \\
y_{2, n+1}=\left(7 y_{2, n}+5\right) \bmod 18, & n \geq 0, \\
y_{3, n+1}=\left(4 y_{3, n}+8\right) \bmod 27, & n \geq 0, \\
x_{n}=\left(y_{1, n}-y_{2, n}+y_{3, n}\right) \bmod 15, & n \geq 0 .
\end{array}
$$

$\left\{x_{n}\right\}=1,4,0,2,7,12,2,2,6,6,7,7,5,2,0,9,1,1,9,11,7,9,2,8,9,12,1,1,14,2,12,9,7,4,9,8$, $1,6,14,5,9,0,1,4,8,8,6,9,4,4,3,11,4,3,11,14,9,12,1,7,11,11,0,0,1,1,0,11,10,3,11,11$, $3,6,1,4,11,2,3,6,10,10,9,11,7,3,2,14,3,3,10,1,8,14,3,9,10,13,3,2,1,3,14,14,12,6,13$, $13,5,8,3,6,10,1,6,5,10,9,11,11,9,6,4,13,5,5,12,0,10,13,6,11,13,0,5,5,3,6,1,13,11,8$, $12,12,4,10,3,8,13,3,5,8,12,12,10,13,8,8,6,0,7,7,0,2,13,0,5,11,0,0,4,4,5,5,3,0,13,7$, $0,14,7,9,5,8,0,6,7,10,14,14,12,0,10,7,6,2,7,6,14,5,12,3,7,13,14,2,6,6,4,7,3,2,1,9$, $2,2,9,12,7,10,14,5,9,9,13,13,0,14,13,9,8,2,9,9,1,4,14,2,9,0,1,4,9,8,7,9,5,2,0,12,1$, $1,8,14,6,12,1,7,9,11,1,0,14,2,12,12,10,4,11,11,3,6,1,4,9,14,4,3,8,8,9,9,7,4,2,11,3$, $3,10,13,9,11,4,9,11,14,3,3,1,4,14,11,9,6,10,10,3,8,1,6,11,2,3,6,10,10,8,11,6,6,4$, $13,6,5,13,0,11,14,3,9,13,13,2,2,3,3,1,13,12,5,13,12,5,8,3,6,13,4,5,8,12,12,10,13$, $9,5,4,0,5,5,12,3,10,1,5,11,12,0,4,4,3,5,1,0,14,8,0,0,7,10,5,8,12,3,7,7,12,11,13,12$, $11,8,6,0,7,7,14,2,12,0,7,13,0,2,7,6,5,8,3,0,13,10,14,14,6,12,4,10,0,5,7,9,14,14,12$, $0,10,10,8,2,9,9$, (sequence restarts:) $1,4,0,2,7,12,2,2,7,7,5, \ldots$

Period length is $432<15 \cdot 17 \cdot 26 / 4$.

Lehmer Generator

Lehmer generator produces sequence $\left\{x_{n}\right\}$ defined by relations

$$
\begin{aligned}
& 0<x_{0}<M, \quad x_{0} \text { coprime to } M . \\
& x_{n+1}=A x_{n} \bmod M, \quad n \geq 0 .
\end{aligned}
$$

Modulus M, seed x_{0}, multiplier A.
Example 9

$$
\begin{aligned}
x_{0} & =1 \\
x_{n+1} & =6 x_{n} \bmod 13
\end{aligned}
$$

$$
\left\{x_{n}\right\}=\underbrace{1,6,10,8,9,2,12,7,3,5,4,11}_{\text {sequence period, length }=12}, 1,6,10,8,9,2,12, \ldots
$$

Example 10

$$
\begin{aligned}
x_{0} & =2 \\
x_{n+1} & =5 x_{n} \bmod 13
\end{aligned}
$$

$$
\left\{x_{n}\right\}=\underbrace{2,10,11,3,} 2,10,11,3,2,10,11,3, \ldots
$$

sequence period, length $=4$

Lehmer Generator

$$
\begin{aligned}
& 0<x_{0}<M, \quad x_{0} \text { coprime to } M . \\
& x_{n+1}=A x_{n} \bmod M, \quad n \geq 0 .
\end{aligned}
$$

Fact

The sequence period length produced by a Lehmer generator is maximal and equal to $M-1$ if M is prime and A is a primitive root of $(\mathbb{Z} / M \mathbb{Z})^{*}$.

Notation
Primitive root $\quad G$ is a primitive root of $(\mathbb{Z} / p \mathbb{Z})^{*}$ if $\left\{G, G^{2}, G^{3}, \ldots, G^{p-1}\right\}=\{1,2,3, \ldots, p-1\}$ (powers are taken modulo p).

Example 11

$p=13, G=2$ is a primitive root of $(\mathbb{Z} / 13 \mathbb{Z})^{*}$.
$\left\{G, G^{2}, \ldots, G^{12}\right\}=\{2,4,8,3,6,12,11,9,5,10,7,1\}=\{1,2,3,4,5,6,7,8,9,10,11,12\}$.
$p=13, G=6$ is a primitive root of $(\mathbb{Z} / 13 \mathbb{Z})^{*}$.
$\left\{G, G^{2}, \ldots, G^{12}\right\}=\{6,10,8,9,2,12,7,3,5,4,11,1\}=\{1,2,3,4,5,6,7,8,9,10,11,12\}$.
$p=13, G=5$ is not a primitive root of $(\mathbb{Z} / 13 \mathbb{Z})^{*}$.
$\left\{G, G^{2}, \ldots, G^{12}\right\}=\{5,12,8,1,5,12,8,1,5,12,8,1\}=\{1,5,8,12\}$.

Lehmer Generator

Finding group primitive roots

No elementary and effective method is known. Some cases has been studied in detail.

8th Mersenne prime $\quad M_{31}=2^{31}-1=2147483647$

Fact G is a primitive root of $\left(\mathbb{Z} / M_{31} \mathbb{Z}\right)^{*}$ iff $G \equiv 7^{b}\left(\bmod M^{31}\right)$, where b is coprime to $M_{31}-1$.

$$
M_{31}-1=2147483646=2 \cdot 3^{2} \cdot 7 \cdot 11 \cdot 31 \cdot 151 \cdot 331
$$

Example 12

$\mathrm{G}=7^{5}=16807$ is a primitive root of $\left(\mathbb{Z} / M_{31} \mathbb{Z}\right)^{*}$ because 5 is coprime to $M_{31}-1$.
$\mathrm{G}=7^{1116395447} \equiv 48271(\bmod \operatorname{M31})$ is a primitive root of $\left(\mathbb{Z} / M_{31} \mathbb{Z}\right)^{*}$ because 1116395447 is a prime and therefore coprime to $M_{31}-1$.
$G=7^{1058580763} \equiv 69621(\bmod M 31)$ is a primitive root of $\left(\mathbb{Z} / M_{31} \mathbb{Z}\right)^{*}$ because $1058580763=19 \cdot 41 \cdot 61 \cdot 22277$ and therefore coprime to $M_{31}-1$.

Blum Blum Shub Generator

Blum Blum Shub generator produces sequence $\left\{x_{n}\right\}$ defined by relations

$$
\begin{aligned}
& 2 \leq x_{0}<M, \quad x_{0} \text { coprime to } M . \\
& x_{n+1}=x_{n}^{2} \bmod M
\end{aligned}
$$

Modulus M, seed x_{0}.
Seed $\quad x_{0}$ coprime to M.
Modulus M is a product of two large distinct primes P and Q.
$P \bmod 4=Q \bmod 4=3$,
$\operatorname{gcd}((P-3) / 2,(Q-3) / 2)$ is small.

Example $13 \quad x_{0}=4, \quad M=11 \cdot 47, \quad \operatorname{gcd}(4,22)=2$,

$$
x_{n+1}=x_{n}^{2} \bmod 517
$$

$\left\{x_{n}\right\}=\underline{4}, 16,256,394,136,401,14,196,158,148,190,427,345,115,300,42,213$, $390,102,64,477,49,333,251,444,159,465,119,202,478,487,383,378$, $192,157,350,488,324,25,108,290,346,289,284,4,16,256,394,136, \ldots$
sequence period, length $=44$

Kvízová pauza

Přesuňte 3 sirky tak, aby vlaštovka letěla na jih.

Jaká dvojice písmen logicky patří na místo otazníků?

Přesuňte právě jednu z pěti modrých číslic, aby rovnost platila.

$$
62-63=1
$$

Vyřešte algebrogram.

Primes related notions

Prime counting function $\pi(n)$
Counts the number of prime numbers less than or equal to n.

Example 14

$\pi(10)=4$. Primes less than or equal to 10: $2,3,5,7$.
$\pi(37)=12$. Primes less than or equal to $37: 2,3,5,7,11,13,17,19,23,29,31,37$.
$\pi(100)=25$. Primes less than or equal to $100: 2,3,5,7,11,13,17,19,23,29,31,37,41$,

$$
43,47,53,59,61,67,71,73,79,83,89,97 .
$$

Estimate

$$
\frac{n}{\ln n}<\pi(n)<1.25506 \frac{n}{\ln n} \text { for } n>16
$$

Example 15

$$
\begin{array}{ll}
\frac{100}{\ln 100}<\pi(100)<1.25506 \frac{100}{\ln 100} & \frac{10^{6}}{\ln 10^{6}}<\pi\left(10^{6}\right)<1.25506 \frac{10^{6}}{\ln 10^{6}} \\
21.715<\pi(100)=25<27.253 & 72382.4<\pi\left(10^{6}\right)=78498<90844.3
\end{array}
$$

Limit behaviour
Prime number theorem: $\quad \lim _{n \rightarrow \infty} \frac{\pi(n)}{\frac{n}{\ln n}}=1$

Sieve of Eratosthenes

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Sieve of Eratosthenes

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Sieve of Eratosthenes

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Sieve of Eratosthenes

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Sieve of Eratosthenes

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Sieve of Eratosthenes

Algorithm

EratosthenesSieve (n)
Let A be an array of Boolean values, indexed by integers 2 to n, initially all set to true for $i=2$ to \sqrt{n}
if $A[i]=$ true then
for $j=i^{2}, i^{2}+i, i^{2}+2 i, i^{2}+3 i, \ldots$, not exceeding n
$A[j]$:= false
end
output all i such that $A[i]$ is true
end

Time complexity: $\mathrm{O}(n \log \log n)$.

Randomized primality tests

General scheme

Fermat (little) theorem
If p is prime and $0<a<\mathrm{p}$, then $a^{p-1} \equiv 1(\bmod \mathrm{p})$.
Fermat primality test

```
FermatTest ( \(\mathrm{n}, \mathrm{k}\) )
    for \(\mathrm{i}=1\) to k
        \(a=\) random integer in [2, \(\mathrm{n}-2\) ]
        if \(a^{n-1} \not \equiv 1(\bmod \mathrm{n})\) then return Composite
    end
    return Prime
end
```

Flaw There are infinitely many composite numbers for which the test always fails: Carmichael numbers: 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, (sequence A002997 in the OEIS)
Note OEIS = The On-Line Encyclopedia of Integer Sequences, (https://oeis.org)

Randomized primality tests

Miller-Rabin primality test

Fermat: If p is prime and $0<a<p$, then $a^{p-1} \equiv 1(\bmod p)$.
Lemma: If p is prime and $x^{2} \equiv 1(\bmod p)$ then $x \equiv 1(\bmod p)$ or $x \equiv-1(\bmod p)$.

Example:

Is $n=15$ prime?
Let $a=4$.
Fermat test: $4^{15-1} \bmod 15=1 \ldots$ OK.
Apply the lemma to 4^{14}--> If 15 is prime, then $\sqrt{4^{14}}=4^{7} \bmod 15 \in\{1,-1\}$. However, $4^{7} \bmod 15=4$, hence 15 is a composite number.

Randomized primality tests

Miller-Rabin primality test

Lemma: If p is prime and $x^{2} \equiv 1(\bmod p)$ then $x \equiv 1(\bmod p)$ or $x \equiv-1(\bmod p)$.
\Rightarrow Let $n>2$ be prime, $n-1=2^{r} \cdot d$ where d is odd, $1<a<n-1$.
Then either $a^{d} \equiv 1(\bmod n)$ or $a^{2^{s} \cdot d} \equiv-1(\bmod n)$ for some $0 \leq s \leq r-1$.
MillerRabinTest (n, k)
compute r, d such that d is odd and $2^{r} \cdot d=n-1$ for $i=1$ to k // WitnessLoop
$a=$ random integer in [2, $n-2$]
$x=a^{d} \bmod n$
if $x=1$ or $x=n-1$ then goto EndOfLoop
for $j=1$ to $r-1$
$x=x^{2} \bmod n$
if $x=1$ then return Composite
if $x=n-1$ then goto EndOfLoop
end
return Composite
EndOfLoop:
end
return Prime

$$
\begin{aligned}
& \text { Examples: } \\
& n=1105=2^{4} \cdot 69+1 \\
& a=389 \\
& x_{0}=1039 \\
& x_{1}=1041 \\
& x_{2}=781 \\
& x_{3}=1 \text {-> Composite } \\
& \\
& n=1105=2^{4} \cdot 69+1 \\
& a=390
\end{aligned} \quad n=13=2^{2} \cdot 3+110 \begin{array}{ll}
x_{0}=539 & a=7 \\
x_{1}=1011 & x_{0}=5 \\
x_{2}=1101 & x_{1}=12 \equiv-1(\bmod 13) \\
x_{3}=16 & \text { WitnessLoop passes } \\
->\text { Composite } &
\end{array}
$$

Randomized primality tests

Miller-Rabin primality test

- Time complexity: $\mathrm{O}\left(k \log ^{3} n\right)$.
- If n is composite then the test declares n prime with a probability at most 4^{-k}.
- A deterministic variant exists, however it relies on unproven generalized Riemann hypothesis.

AKS primality test

- First known deterministic polynomial-time primality test.
- Agrawal, Kayal, Saxena, 2002 - Gödel Prize in 2006.
- Time complexity: $\mathrm{O}\left(\log ^{6} n\right)$.
- The algorithm is of immense theoretical importance, but not used in practice.

Integer factorization

Difficulty of the problem

- No efficient algorithm is known.
- The presumed difficulty is at the heart of widely used algorithms in cryptography (RSA).

Pollard's rho algorithm

- Effective for a composite number having a small prime factor.

PollardRho (n)

$$
x=y=2 ; d=1
$$

$$
\text { while } d=1
$$

$$
x=g(x) \bmod n
$$

$$
y=g(g(y)) \bmod n
$$

$$
d=\operatorname{gcd}(|x-y|, n)
$$

end
if $d=n$ return Failure
else return d
end

Integer factorization

Pollard's rho algorithm - analysis

- Assume $n=p q$.
- Values of x and y form two sequences $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$, respectively, where $y_{k}=x_{2 k}$ for each k. Both sequences enter a cycle. This implies there is t such that $y_{t}=x_{t}$.
- Sequences $\left\{x_{k} \bmod p\right\}$ and $\left\{y_{k} \bmod p\right\}$ typically enter a cycle of shorter length. If, for some $\mathrm{s}<t, x_{s} \equiv y_{s}(\bmod p)$, then p divides $\left|x_{s}-y_{s}\right|$ and the algorithm halts.
- The expected number of iterations is $\mathrm{O}(\sqrt{p})=\mathrm{O}\left(n^{1 / 4}\right)$.

References

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein: Introduction to Algorithms, 3rd ed., MIT Press, 2009, Chapter 31 Number-Theoretic Algorithms

OEIS, The On-Line Encyclopedia of Integer Sequences (https://oeis.org)
Stephen K. Park, Keith W. MIIler: Random number generators: good ones are hard to find, Communications of the ACM, Volume 31 Issue 10, Oct. 1988

Pierre L'Ecuyer: Efficient and portable combined random number generators, Communications of the ACM, Volume 31 Issue 6, June 1988

[^0]: "Various Techniques Used in Connection with Random Digits,", in Monte Carlo Method (A. S. Householder, G. E. Forsythe, and H. H. Germond, eds.), National Bureau of Standards Applied Mathematics Series, 12, Washington, D.C.: U.S. Government Printing Office, 1951, pp. 36-38.

