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A Linear Classifier

Classification according to signum of an affine function of x:

q(x) = sign(w · x+ b) (1)

A solution for {w, b} correctly classifying the training set:
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Maximum Margin Linear Classifier

� Let d(x) denote the distance of a point x ∈ T from the training set T to the decision
boundary of a linear classifier given by parameters (w, b).

� The margin m of a linear classifier (w, b) is defined as follows:
(i) If the classifier classifies all data correctly then m = 2minx∈T d(x).

Points x ∈ T safisfying m = 2d(x) are called support vectors.
(ii) If the classifier has non-zero error on T then m = 0.

� Goal: Find the classifier (w∗, b∗) maximizing the margin. Vapnik justifies the use of
maximum margin from the viewpoint of Structural Risk Minimization.

Margin of a classifier (w, b): Maximum margin classifier (w∗, b∗):
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Maximizing Margin, Formulation

� Let us define signed distance d(x, y) of a point x belonging to class y ∈ {1,−1} to the
decision boundary of classifier (w, b):

d(x, y) =
y(w · x+ b)

‖w‖
(2)

� We search for (w, b) such that d(x, y) > 0 for all training data (all training points are
in their class’ half-space). This is equivalent to y(w · x+ b) > 0 .

Optimization task:

(w∗, b∗) = argmax
w,b

min
(x,y)∈T

2d(x, y)

subject to:
y(w · x+ b) > 0,∀(x, y) ∈ T (C)
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Maximizing Margin, Scale Ambiguity

� There is a scale ambiguity in the parameters (w, b). Any feasible (w, b) (that is,
satisfying Eq. (C)) can be multiplied by a positive constant (w, b)→ (σw, σb), and:
(i) feasibility does not change, as

y(σw · x+ σb) = σy(w · x+ b) > 0⇔ y(w · x+ b) > 0, and (3)

(ii) signed distances do not change, as

d(x, y) =
y(σw · x+ σb)

‖σw‖
=
y(w · x+ b)

‖w‖
. (4)

Optimization task:

(w∗, b∗) = argmax
w,b

min
(x,y)∈T

2d(x, y)

subject to:
y(w · x+ b) > 0,∀(x, y) ∈ T (C)
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Maximizing Margin, Fixing Scale

� Constraints y(w · x+ b) > 0 are equivalent to y(w · x+ b) ≥ ε (with ε > 0)

� Break the scale ambiguity by setting ε = 1:

(w∗, b∗) = argmax
w,b

min
(x,y)∈T

2d(x, y)

subject to: y(w · x+ b) ≥ 1,∀(x, y) ∈ T (5)

Optimization task (original):

(w∗, b∗) = argmax
w,b

min
(x,y)∈T

2d(x, y)

subject to:
y(w · x+ b) > 0,∀(x, y) ∈ T (C)

d(x, y) =
y(w · x+ b)

‖w‖
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Maximizing Margin, Final Optimization Formulation (1)

� That is, all points must be outside the strip delineated by the two lines w · x+ b = 1
and w · x+ b = −1. The width of this strip is 2

‖w‖. It follows that the maximum margin
m∗ is

m∗ = max
w,b

min
(x,y)∈T

2d(x, y) = max
w,b

2

‖w‖
subject to: y(w · x+ b) ≥ 1,∀(x, y) ∈ T (6)

Optimization task (original):

(w∗, b∗) = argmax
w,b

min
(x,y)∈T

2d(x, y)

subject to:
y(w · x+ b) > 0,∀(x, y) ∈ T (C)

d(x, y) =
y(w · x+ b)

‖w‖
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Maximizing Margin, Final Optimization Formulation (2)

� That is, all points must be outside the strip delineated by the two lines w · x+ b = 1
and w · x+ b = −1. The width of this strip is 2

‖w‖. It follows that the maximum margin
m∗ is

m∗ = max
w,b

min
(x,y)∈T

2d(x, y) = max
w,b

2

‖w‖
subject to: y(w · x+ b) ≥ 1,∀(x, y) ∈ T (7)

� There holds: argmax
w

2

‖w‖
= argmin

w
‖w‖ = argmin

w

1

2
‖w‖2. Therefore, the (w∗, b∗)

maximizing the margin are:

(w∗, b∗) = argmin
(w,b)

1

2
‖w‖2

subject to: y(w · x+ b) ≥ 1,∀(x, y) ∈ T (8)

� This is a Quadratic Programming (QP) problem (more generally, it is minimization of a
convex function on a convex domain.)
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SVM, Example (1D)

x
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SVM, Example (1D), Result

x
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SVM, Primal Problem

The derived optimization problem for w and b is

(w∗, b∗) = argmin
(w,b)

1

2
‖w‖2

subject to: y(w · x+ b) ≥ 1,∀(x, y) ∈ T (9)

It is called primal problem. We will also soon derive the dual problem. For now, note that
the above optimization task can be equivalently regarded as solving an unconstrained
problem (this observation will become handy when deriving the dual problem):

(w∗, b∗) = argmin
(w,b)

1

2
‖w‖2 +

∑
(x,y)∈T

f(x, y,w, b)

 , where (10)

f(x, y,w, b) =
{

0 if y(w · x+ b) ≥ 1,
∞, otherwise (11)

Note that f(x, y,w, b) for a given (x, y) is a convex function of w, b.
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The Dual Formulation (1)

Start with just discussed primal formulation. Let T = {(x1, y1), (x2, y2), ..., (xN , yN)} be
the training set. We want to solve

(w∗, b∗) = argmin
(w,b)

{
1

2
‖w‖2 +

N∑
i=1

f(xi, yi,w, b)

}
, where

f(xi, yi,w, b) =
{

0 if yi(w · xi + b) ≥ 1.
∞, otherwise (12)

This is the same as (αi’s are non-negative multipliers):

(w∗, b∗) = argmin
w,b


1

2
‖w‖2 + max

{αi}
αi≥0

i∈{1,..,N}

(
−

N∑
i=1

αi[yi(w · xi + b)− 1]

) . (13)

because
yi(w · xi + b) > 1 ⇒ max

αi
(−αi[yi(w · xi + b)− 1]) = 0 for αi = 0 , (14)

yi(w · xi + b) < 1 ⇒ max
αi

(−αi[yi(w · xi + b)− 1]) =∞ for αi =∞ , (15)

yi(w · xi + b) = 1 ⇒ max
αi

(−αi[yi(w · xi + b)− 1]) = 0 for any αi ≥ 0 . (16)
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The Dual Formulation (2)

This is in turn the same as

(w∗, b∗) = argmin
w,b

max
{αi}
αi≥0

i∈{1,..,N}

{
1

2
‖w‖2 −

N∑
i=1

αi[yi(w · xi + b)− 1]

}
. (17)

There holds, in full generality, that maxpminq f(p, q) ≤ minqmaxp f(p, q). For our case,

min
w,b

max
{αi}
αi≥0

i∈{1,..,N}

{
1

2
‖w‖2 −

N∑
i=1

αi[yi(w · xi + b)− 1]

}
≥

≥ max
{αi}
αi≥0

i∈{1,..,N}

min
w,b

{
1

2
‖w‖2 −

N∑
i=1

αi[yi(w · xi + b)− 1]

}
(18)

This is the essence of converting the primal problem to the dual one. And, our case is even
better: strong duality holds, and the two terms are equal (duality gap is zero). Denote the
inner term by L(w, b, α) (corresponds to what’s commonly known as the Lagrangian):

L(w, b, α) =
1

2
‖w‖2 −

N∑
i=1

αi[yi(w · xi + b)− 1] (19)

http://cmp.felk.cvut.cz


14/38
The Dual Formulation (3)

L(w, b, α) =
1

2
‖w‖2 −

N∑
i=1

αi[yi(w · xi + b)− 1] (20)

We want to find argmaxα≥0minw,bL(w, b, α). First, for fixed α, find minw,bL(w, b, α):

∂L

∂w
= w −

N∑
i=1

αiyixi = 0 ⇒ w =

N∑
i=1

αiyixi (21)

∂L

∂b
=

N∑
i=1

αiyi = 0 (22)

Put this to Lagrangian:

L(w, b, α) =
1

2
‖w‖2 −

N∑
i=1

αi[yi(w · xi + b)− 1] = (23)

=
1

2
‖w‖2 −

(
N∑
i=1

αiyixi

)
·w −

N∑
i=1

αiyib+

N∑
i=1

αi (24)

= −1
2
‖w‖2 +

N∑
i=1

αi =

N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjxi · xj (25)

http://cmp.felk.cvut.cz


15/38
The Dual Formulation, Result and Insights

The dual optimization problem:

α = argmax
α

(
min
w,b

L(w, b, α)

)
= argmax

α


N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjxi · xj

 (26)

subject to:
∑
i

αiyi = 0; αi ≥ 0, ∀i ∈ {1, 2, ..., N} (27)

� Number of optimization variables αi’s is N (the number of training data). But at the
solution, all αi’s but those of support vectors are zero.

� Once the solution is obtained, the primal variables can be computed as

w =

N∑
i=1

αiyixi only support vectors (αi > 0) contribute (28)

yS[w · xS + b] = 1 for any support vector (xS, yS) ⇒ b = yS −w · xS (29)
� The discriminant function w · x+ b thus takes the form (P are indices of all support
vectors):

w · x+ b =
∑
i∈P

αiyi(xi · x) + yS −
∑
i∈P

αiyi(xi · xS)︸ ︷︷ ︸
constant, independent of x

(30)

� Both the dual classification problem and the discriminant function involve data points
only in the form of dot products.
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The Dual Problem, Example (1)

Consider the 3 points as below

Objective: maximize

α1 + α2 + α3 − 1
2

 α1

α2

α3

T  y1y1x1 · x1 y1y2x1 · x2 y1y3x1 · x3

y2y1x2 · x1 y2y2x2 · x2 y2y3x2 · x3

y3y1x3 · x1 y3y2x3 · x2 y3y3x3 · x3

 α1

α2

α3


subject to: α1, α2, α3 ≥ 0; α1 + α2 − α3 = 0
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The Dual Problem, Example (2)

Consider the 3 points as below

Objective: maximize

α1 + α2 + α3 − 1
2

 α1

α2

α3

T  1 2 1
2 5 2
1 2 1

 α1

α2

α3


subject to: α1, α2, α3 ≥ 0; α1 + α2 − α3 = 0
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The Dual Problem, Example (3)

Substitute α3 = α1 + α2 and search for solution as a problem in α1, α2. After some
straightforward computation, the original problem turns to:

maximize 2(α1 + α2)− 1
2

[
α1

α2

]T [
4 6
6 10

] [
α1

α2

]
subject to: α1, α2 ≥ 0. Solution: (α1, α2) = (12, 0), α3 =

1
2 + 0 = 1

2.
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The Dual Problem, Example, Result

Result: (α1, α2, α3) = (12, 0,
1
2). The support vectors are x1 and x3 because their αi > 0.

Vector w =
∑
i={1,3}αiyixi =

1
2(0, 1)−

1
2(0,−1) = (0, 1).

Offset b = yS −wxS = 1−wx1 = −1−wx3 = 0.

Decision boundary (0, 1)T · x = 0 .
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Soft Margin SVM

If the data are not linearly separable, slack variables ξi need to be introduced.

� Position and size of margin is implied by w and b, as before.

� If a point (x, y) fulfills the condition y(w · x+ b) ≥ 1 then no penalty is paid.

� Otherwise, the condition is relaxed to y(w · x+ b) ≥ 1− ξ and penalty C · ξ is paid

(w∗, b∗) = argmin
(w,b)

1

2
‖w‖2 + C

N∑
i=1

ξi (31)

subject to:
yi(w · xi + b) ≥ 1− ξi, (32)
ξi ≥ 0, (33)
∀i = 1, ..., N
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Soft Margin SVM

The primal problem

(w∗, b∗) = argmin
(w,b)

1

2
‖w‖2 + C

N∑
i=1

ξi

subject to: yi(w · xi + b) ≥ 1− ξi, ∀i = 1, ..., N (34)
subjectto :ξi ≥ 0, ∀i = 1, ..., N (35)

The dual problem:

α = argmax
α


N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjxi · xj

 (36)

subject to:
∑
i

αiyi = 0 (37)

subject to: 0 ≤ αi ≤ C, ∀i ∈ {1, 2, ..., N} (38)
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Linear SVMs:  Overview

 The classifier is a separating hyperplane.

 Most “important” training points are support vectors; they 
define the hyperplane.

 Quadratic optimization algorithms can identify which training 
points xi are support vectors with non-zero Lagrangian 
multipliers hi.

 Both in the dual formulation of the problem and in the solution 
training points appear only inside inner-products.

22/38

http://cmp.felk.cvut.cz


Who really need linear classifiers
 Datasets that are linearly separable with some noise, linear SVM 

work well:

 But if the dataset is non-linearly separable? 

 How about… mapping data to a higher-dimensional space:

0

x2

x

0 x

0 x
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Non-linear SVMs:  Feature spaces
 General idea:   the original space can always be mapped to some 

higher-dimensional feature space where the training set becomes 
separable:

Φ:  x → φ(x)

24/38
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The “Kernel Trick”

 The SVM only relies on the inner-product between vectors xi
.xj

 If every datapoint is mapped into high-dimensional space via 
some transformation Φ:  x→ φ(x), the inner-product becomes:

K(xi,xj)= φ(xi) .φ(xj)

 K(xi,xj ) is called the kernel function.
 For SVM, we only need specify the kernel K(xi,xj ), without need 

to know the corresponding non-linear mapping, φ(x).

25/38
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Non-linear SVMs

 The dual problem:

 Optimization techniques for finding hi’s remain the same!
 The solution is:
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Examples of Kernel Trick (1)

 For the example in the previous figure: 
 The non-linear mapping

 The kernel

 Where is the benefit?
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Examples of Kernel Trick (2)

 Polynomial kernel of degree 2 in 2 variables
 The non-linear mapping:

 The kernel
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Examples of kernel trick (3)

 Gaussian kernel: 

 The mapping is of infinite dimension:

 The moral:  very high-dimensional and complicated non-linear mapping can 
be achieved by using a simple kernel!
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What Functions are Kernels?

 For some functions K(xi,xj) checking that K(xi,xj)= φ(xi) .φ(xj) 
can be cumbersome. 

 Mercer’s theorem:  
Every semi-positive definite symmetric function is a kernel

30/38
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Examples of Kernel Functions

 Linear kernel:

 Polynomial kernel of power p:

 Gaussian kernel:

 In the form, equivalent to RBFNN, but has the advantage of that the center of basis 
functions, i.e., support vectors, are optimized in a supervised.

 Two-layer perceptron:

jijiK xxxx ⋅=),(

22 2/||||),( σjieK ji
xxxx −−=

p
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)tanh(),( βα +⋅= jijiK xxxx
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Lifting Dimension by Polynomial Mapping of Degree d

Let d ∈ N and x = [x1, x2, ..., xD]
> ∈ RD.

Let φd(x) denote the mapping which lifts x to the space containing all monomials of degree
d′, 1 ≤ d′ ≤ d in the components of x:

For example, when x = [x1, x2]
> ∈ R2,

φ1(x) = [x1, x2]
>
, (39)

φ2(x) = [x1, x2, x
2
1, x1x2, x

2
2]
>
, (40)

φ3(x) = [x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2]
>
. (41)

The number of monomials of degree d′ of x ∈ RD is
(
d′+D−1

d′
)
. The dimensionality L of the

output space of φd(x) is thus

L =

d∑
d′=1

(
d′ +D − 1

d′

)
. (42)
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Lifting Dimension by Polynomial Mapping of Degree d

Feature space dimensionality D, lifting by φd(x)

dimensionality of feature space after lifting (L)

D
d 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 5 9 14 20 27 35 44
3 3 9 19 34 55 83 119 164
4 4 14 34 69 125 209 329 494
5 5 20 55 125 251 461 791 1286
6 6 27 83 209 461 923 1715 3002
7 7 35 119 329 791 1715 3431 6434
8 8 44 164 494 1286 3002 6434 12869
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Lifting by Polynomial Mapping of Degree d, Example
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Lifting by Polynomial Mapping of Degree d, Example
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SVM Overviews

 Main features:
 By using the kernel trick, data is mapped into a high-

dimensional feature space, without introducing much 
computational effort;

 Maximizing the margin achieves better generation 
performance;

 Soft-margin accommodates noisy data;
 Not too many parameters need to be tuned.

 Demos(http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml)

36/38
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SVM so far

 SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and 
gained increasing popularity in late 1990s.

 SVMs are currently among the best performers for many benchmark datasets.
 SVM techniques have been extended to a number of tasks such as regression 

[Vapnik et al. ’97].
 Most popular optimization algorithms for SVMs are SMO [Platt ’99] and 

SVMlight [Joachims’ 99], both use decomposition to handle large size datasets.
 It seems the kernel trick is the most attracting site of SVMs. This idea has now 

been applied to many other learning models where the inner-product is 
concerned, and they are called ‘kernel’ methods.

 Tuning SVMs remains to be the main research focus:  how to an optimal kernel? 
Kernel should match the smooth structure of data. 
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Appendix

Online demo: http://cs.stanford.edu/people/karpathy/svmjs/demo/
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