Support Vector Machines

Lecturer:
Jiří Matas

Authors:
Ondřej Drbohlav, Jiří Matas
Centre for Machine Perception Czech Technical University, Prague
http://cmp.felk.cvut.cz

Slide credits:
Alexander Apartsin
12.11.2018

A Linear Classifier

Classification according to signum of an affine function of \mathbf{x} :

$$
\begin{equation*}
q(\mathbf{x})=\operatorname{sign}(\mathbf{w} \cdot \mathbf{x}+b) \tag{1}
\end{equation*}
$$

A solution for $\{\mathbf{w}, b\}$ correctly classifying the training set:

Maximum Margin Linear Classifier

- Let $d(\mathbf{x})$ denote the distance of a point $\mathbf{x} \in \mathcal{T}$ from the training set \mathcal{T} to the decision boundary of a linear classifier given by parameters (\mathbf{w}, b).
- The margin m of a linear classifier (\mathbf{w}, b) is defined as follows:
(i) If the classifier classifies all data correctly then $m=2 \min _{\mathbf{x} \in \mathcal{T}} d(\mathbf{x})$.

Points $\mathbf{x} \in \mathcal{T}$ safisfying $m=2 d(\mathbf{x})$ are called support vectors.
(ii) If the classifier has non-zero error on \mathcal{T} then $m=0$.

- Goal: Find the classifier $\left(\mathbf{w}^{*}, b^{*}\right)$ maximizing the margin. Vapnik justifies the use of maximum margin from the viewpoint of Structural Risk Minimization.

Margin of a classifier (\mathbf{w}, b):

Maximum margin classifier $\left(\mathbf{w}^{*}, b^{*}\right)$:

Maximizing Margin, Formulation

- Let us define signed distance $d(\mathbf{x}, y)$ of a point \mathbf{x} belonging to class $y \in\{1,-1\}$ to the decision boundary of classifier (\mathbf{w}, b) :

$$
\begin{equation*}
d(\mathbf{x}, y)=\frac{y(\mathbf{w} \cdot \mathbf{x}+b)}{\|\mathbf{w}\|} \tag{2}
\end{equation*}
$$

- We search for (\mathbf{w}, b) such that $d(\mathbf{x}, y)>0$ for all training data (all training points are in their class' half-space). This is equivalent to $y(\mathbf{w} \cdot \mathbf{x}+b)>0$.

Optimization task:

$$
\left(\mathbf{w}^{*}, b^{*}\right)=\underset{\mathbf{w}, b}{\operatorname{argmax}} \min _{(\mathbf{x}, y) \in \mathcal{T}} 2 d(\mathbf{x}, y)
$$

subject to:

$$
\begin{equation*}
y(\mathbf{w} \cdot \mathbf{x}+b)>0, \forall(\mathbf{x}, y) \in \mathcal{T} \tag{C}
\end{equation*}
$$

Maximizing Margin, Scale Ambiguity

- There is a scale ambiguity in the parameters (\mathbf{w}, b). Any feasible (\mathbf{w}, b) (that is, satisfying Eq. (C)) can be multiplied by a positive constant $(\mathbf{w}, b) \rightarrow(\sigma \mathbf{w}, \sigma b)$, and:
(i) feasibility does not change, as

$$
\begin{equation*}
y(\sigma \mathbf{w} \cdot \mathbf{x}+\sigma b)=\sigma y(\mathbf{w} \cdot \mathbf{x}+b)>0 \Leftrightarrow y(\mathbf{w} \cdot \mathbf{x}+b)>0, \text { and } \tag{3}
\end{equation*}
$$

(ii) signed distances do not change, as

$$
\begin{equation*}
d(\mathbf{x}, y)=\frac{y(\sigma \mathbf{w} \cdot \mathbf{x}+\sigma b)}{\|\sigma \mathbf{w}\|}=\frac{y(\mathbf{w} \cdot \mathbf{x}+b)}{\|\mathbf{w}\|} \tag{4}
\end{equation*}
$$

Optimization task:

$$
\left(\mathbf{w}^{*}, b^{*}\right)=\underset{\mathbf{w}, b}{\operatorname{argmax}} \min _{(\mathbf{x}, y) \in \mathcal{T}} 2 d(\mathbf{x}, y)
$$

subject to:

$$
\begin{equation*}
y(\mathbf{w} \cdot \mathbf{x}+b)>0, \forall(\mathbf{x}, y) \in \mathcal{T} \tag{C}
\end{equation*}
$$

Maximizing Margin, Fixing Scale

- Constraints $y(\mathbf{w} \cdot \mathbf{x}+b)>0$ are equivalent to $y(\mathbf{w} \cdot \mathbf{x}+b) \geq \epsilon($ with $\epsilon>0)$
- Break the scale ambiguity by setting $\epsilon=1$:

$$
\begin{align*}
& \left(\mathbf{w}^{*}, b^{*}\right)=\underset{\mathbf{w}, b}{\operatorname{argmax}} \min _{(\mathbf{x}, y) \in \mathcal{T}} 2 d(\mathbf{x}, y) \\
& \text { subject to: } y(\mathbf{w} \cdot \mathbf{x}+b) \geq 1, \forall(\mathbf{x}, y) \in \mathcal{T} \tag{5}
\end{align*}
$$

Optimization task (original):

$$
\left(\mathbf{w}^{*}, b^{*}\right)=\underset{\mathbf{w}, b}{\operatorname{argmax}} \min _{(\mathbf{x}, y) \in \mathcal{T}} 2 d(\mathbf{x}, y)
$$

subject to:

$$
\begin{align*}
& y(\mathbf{w} \cdot \mathbf{x}+b)>0, \forall(\mathbf{x}, y) \in \mathcal{T} \tag{C}\\
& d(\mathbf{x}, y)=\frac{y(\mathbf{w} \cdot \mathbf{x}+b)}{\|\mathbf{w}\|}
\end{align*}
$$

Maximizing Margin, Final Optimization Formulation (1)

- That is, all points must be outside the strip delineated by the two lines $\mathbf{w} \cdot \mathbf{x}+b=1$ and $\mathbf{w} \cdot \mathbf{x}+b=-1$. The width of this strip is $\frac{2}{\|\mathbf{w}\|}$. It follows that the maximum margin m^{*} is

$$
\begin{align*}
& m^{*}=\max _{\mathbf{w}, b} \min _{(\mathbf{x}, y) \in \mathcal{T}} 2 d(\mathbf{x}, y)=\max _{\mathbf{w}, b} \frac{2}{\|\mathbf{w}\|} \\
& \text { subject to: } y(\mathbf{w} \cdot \mathbf{x}+b) \geq 1, \forall(\mathbf{x}, y) \in \mathcal{T} \tag{6}
\end{align*}
$$

Optimization task (original):

$$
\left(\mathbf{w}^{*}, b^{*}\right)=\underset{\mathbf{w}, b}{\operatorname{argmax}} \min _{(\mathbf{x}, y) \in \mathcal{T}} 2 d(\mathbf{x}, y)
$$

subject to:

$$
\begin{align*}
& y(\mathbf{w} \cdot \mathbf{x}+b)>0, \forall(\mathbf{x}, y) \in \mathcal{T} \tag{C}\\
& d(\mathbf{x}, y)=\frac{y(\mathbf{w} \cdot \mathbf{x}+b)}{\|\mathbf{w}\|}
\end{align*}
$$

Maximizing Margin, Final Optimization Formulation (2)

- That is, all points must be outside the strip delineated by the two lines $\mathbf{w} \cdot \mathbf{x}+b=1$ and $\mathbf{w} \cdot \mathbf{x}+b=-1$. The width of this strip is $\frac{2}{\|\mathbf{w}\|}$. It follows that the maximum margin m^{*} is

$$
\begin{align*}
& m^{*}=\max _{\mathbf{w}, b} \min _{(\mathbf{x}, y) \in \mathcal{T}} 2 d(\mathbf{x}, y)=\max _{\mathbf{w}, b} \frac{2}{\|\mathbf{w}\|} \\
& \text { subject to: } y(\mathbf{w} \cdot \mathbf{x}+b) \geq 1, \forall(\mathbf{x}, y) \in \mathcal{T} \tag{7}
\end{align*}
$$

There holds: $\underset{\mathbf{w}}{\operatorname{argmax}} \frac{2}{\|\mathbf{w}\|}=\underset{\mathbf{w}}{\operatorname{argmin}}\|\mathbf{w}\|=\underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2}\|\mathbf{w}\|^{2}$. Therefore, the $\left(\mathbf{w}^{*}, b^{*}\right)$ maximizing the margin are:

$$
\begin{align*}
& \left(\mathbf{w}^{*}, b^{*}\right)=\underset{(\mathbf{w}, b)}{\operatorname{argmin}} \frac{1}{2}\|\mathbf{w}\|^{2} \\
& \text { subject to: } y(\mathbf{w} \cdot \mathbf{x}+b) \geq 1, \forall(\mathbf{x}, y) \in \mathcal{T} \tag{8}
\end{align*}
$$

- This is a Quadratic Programming (QP) problem (more generally, it is minimization of a convex function on a convex domain.)

SVM, Example (1D)

SVM, Example (1D), Result

$$
w x+b=x-1=0
$$

SVM, Primal Problem

The derived optimization problem for \mathbf{w} and b is

$$
\begin{align*}
& \left(\mathbf{w}^{*}, b^{*}\right)=\underset{(\mathbf{w}, b)}{\operatorname{argmin}} \frac{1}{2}\|\mathbf{w}\|^{2} \\
& \text { subject to: } y(\mathbf{w} \cdot \mathbf{x}+b) \geq 1, \forall(\mathbf{x}, y) \in \mathcal{T} \tag{9}
\end{align*}
$$

It is called primal problem. We will also soon derive the dual problem. For now, note that the above optimization task can be equivalently regarded as solving an unconstrained problem (this observation will become handy when deriving the dual problem):

$$
\begin{align*}
& \left(\mathbf{w}^{*}, b^{*}\right)=\underset{(\mathbf{w}, b)}{\operatorname{argmin}}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{(\mathbf{x}, y) \in \mathcal{T}} f(\mathbf{x}, y, \mathbf{w}, b)\right\} \text {, where } \tag{10}\\
& f(\mathbf{x}, y, \mathbf{w}, b)= \begin{cases}0 & \text { if } y(\mathbf{w} \cdot \mathbf{x}+b) \geq 1, \\
\infty, & \text { otherwise }\end{cases} \tag{11}
\end{align*}
$$

Note that $f(\mathbf{x}, y, \mathbf{w}, b)$ for a given (\mathbf{x}, y) is a convex function of \mathbf{w}, b.

The Dual Formulation (1)

Start with just discussed primal formulation. Let $\mathcal{T}=\left\{\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$ be the training set. We want to solve

$$
\begin{gather*}
\left(\mathbf{w}^{*}, b^{*}\right)=\underset{(\mathbf{w}, b)}{\operatorname{argmin}}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{N} f\left(\mathbf{x}_{i}, y_{i}, \mathbf{w}, b\right)\right\}, \text { where } \\
f\left(\mathbf{x}_{i}, y_{i}, \mathbf{w}, b\right)= \begin{cases}0 & \text { if } y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right) \geq 1 \\
\infty, & \text { otherwise }\end{cases} \tag{12}
\end{gather*}
$$

This is the same as (α_{i} 's are non-negative multipliers):

$$
\begin{equation*}
\left(\mathbf{w}^{*}, b^{*}\right)=\underset{\mathbf{w}, b}{\operatorname{argmin}}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}+\max _{\substack{\left\{\alpha_{i}\right\} \\ \alpha_{i} \geq 0 \\ i \in\{1, \ldots, N\}}}\left(-\sum_{i=1}^{N} \alpha_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right]\right)\right\} \tag{13}
\end{equation*}
$$

because

$$
\begin{align*}
& y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)>1 \Rightarrow \max _{\alpha_{i}}\left(-\alpha_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right]\right)=0 \text { for } \alpha_{i}=0 \tag{14}\\
& y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)<1 \Rightarrow \max _{\alpha_{i}}\left(-\alpha_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right]\right)=\infty \text { for } \alpha_{i}=\infty \tag{15}\\
& y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)=1 \Rightarrow \max _{\alpha_{i}}\left(-\alpha_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right]\right)=0 \text { for any } \alpha_{i} \geq 0 . \tag{16}
\end{align*}
$$

The Dual Formulation (2)

This is in turn the same as

$$
\begin{equation*}
\left(\mathbf{w}^{*}, b^{*}\right)=\underset{\mathbf{w}, b}{\operatorname{argmin}} \max _{\substack{\left\{\alpha_{i}\right\} \\ \alpha_{i} \geq 0 \\ i \in\{1, . ., N\}}}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{N} \alpha_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right]\right\} . \tag{17}
\end{equation*}
$$

There holds, in full generality, that $\max _{p} \min _{q} f(p, q) \leq \min _{q} \max _{p} f(p, q)$. For our case,

$$
\begin{align*}
& \min _{\mathbf{w}, b} \max _{\substack{\left\{\alpha_{i}\right\} \\
\alpha_{i} \geq 0 \\
i \in\{1, \ldots, N\}}}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{N} \alpha_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right]\right\} \geq \\
& \geq \max _{\substack{\left\{\alpha_{i}\right\} \\
\alpha_{i} \geq 0 \\
i \in\{1 \geq, \ldots, N\}}} \min _{\mathbf{w}, b}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{N} \alpha_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right]\right\} \tag{18}
\end{align*}
$$

This is the essence of converting the primal problem to the dual one. And, our case is even better: strong duality holds, and the two terms are equal (duality gap is zero). Denote the inner term by $L(\mathbf{w}, b, \alpha)$ (corresponds to what's commonly known as the Lagrangian):

$$
\begin{equation*}
L(\mathbf{w}, b, \alpha)=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{N} \alpha_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right] \tag{19}
\end{equation*}
$$

The Dual Formulation (3)

$$
\begin{equation*}
L(\mathbf{w}, b, \alpha)=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{N} \alpha_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right] \tag{20}
\end{equation*}
$$

We want to find $\operatorname{argmax}_{\alpha \geq 0} \min _{\mathbf{w}, b} L(\mathbf{w}, b, \alpha)$. First, for fixed α, find $\min _{\mathbf{w}, b} L(\mathbf{w}, b, \alpha)$:

$$
\begin{align*}
\frac{\partial L}{\partial \mathbf{w}} & =\mathbf{w}-\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}=0 \Rightarrow \mathbf{w}=\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i} \tag{21}\\
\frac{\partial L}{\partial b} & =\sum_{i=1}^{N} \alpha_{i} y_{i}=0 \tag{22}
\end{align*}
$$

Put this to Lagrangian:

$$
\begin{align*}
L(\mathbf{w}, b, \alpha) & =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{N} \alpha_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right]= \tag{23}\\
& =\frac{1}{2}\|\mathbf{w}\|^{2}-\left(\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}\right) \cdot \mathbf{w}-\sum_{i=1}^{N} \alpha_{i} y_{i} b+\sum_{i=1}^{N} \alpha_{i} \tag{24}\\
& =-\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{N} \alpha_{i}=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j} \tag{25}
\end{align*}
$$

The Dual Formulation, Result and Insights

The dual optimization problem:

$$
\begin{equation*}
\alpha=\underset{\alpha}{\operatorname{argmax}}\left(\min _{\mathbf{w}, b} L(\mathbf{w}, b, \alpha)\right)=\underset{\alpha}{\operatorname{argmax}}\left\{\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}\right\} \tag{26}
\end{equation*}
$$

subject to: $\sum_{i} \alpha_{i} y_{i}=0 ; \quad \alpha_{i} \geq 0, \forall i \in\{1,2, \ldots, N\}$

- Number of optimization variables α_{i} 's is N (the number of training data). But at the solution, all α_{i} 's but those of support vectors are zero.
- Once the solution is obtained, the primal variables can be computed as

$$
\begin{align*}
& \mathbf{w}=\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i} \quad \text { only support vectors }\left(\alpha_{i}>0\right) \text { contribute } \tag{28}\\
& y^{S}\left[\mathbf{w} \cdot \mathbf{x}^{S}+b\right]=1 \text { for any support vector }\left(\mathbf{x}^{S}, y^{S}\right) \Rightarrow b=y^{S}-\mathbf{w} \cdot \mathbf{x}^{S} \tag{29}
\end{align*}
$$

- The discriminant function $\mathbf{w} \cdot \mathbf{x}+b$ thus takes the form (\mathcal{P} are indices of all support vectors):

$$
\begin{equation*}
\mathbf{w} \cdot \mathbf{x}+b=\sum_{i \in \mathcal{P}} \alpha_{i} y_{i}\left(\mathbf{x}_{i} \cdot \mathbf{x}\right)+\underbrace{y^{S}-\sum_{i \in \mathcal{P}} \alpha_{i} y_{i}\left(\mathbf{x}_{i} \cdot \mathbf{x}^{S}\right)}_{\text {constant, independent of } \mathbf{x}} \tag{30}
\end{equation*}
$$

- Both the dual classification problem and the discriminant function involve data points only in the form of dot products.

The Dual Problem, Example (1)

Consider the 3 points as below
Objective: maximize
$\alpha_{1}+\alpha_{2}+\alpha_{3}-\frac{1}{2}\left[\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right]^{T}\left[\begin{array}{lll}y_{1} y_{1} \mathbf{x}_{1} \cdot \mathbf{x}_{1} & y_{1} y_{2} \mathbf{x}_{1} \cdot \mathbf{x}_{2} & y_{1} y_{3} \mathbf{x}_{1} \cdot \mathbf{x}_{3} \\ y_{2} y_{1} \mathbf{x}_{2} \cdot \mathbf{x}_{1} & y_{2} y_{2} \mathbf{x}_{2} \cdot \mathbf{x}_{2} & y_{2} y_{3} \mathbf{x}_{2} \cdot \mathbf{x}_{3} \\ y_{3} y_{1} \mathbf{x}_{3} \cdot \mathbf{x}_{1} & y_{3} y_{2} \mathbf{x}_{3} \cdot \mathbf{x}_{2} & y_{3} y_{3} \mathbf{x}_{3} \cdot \mathbf{x}_{3}\end{array}\right]\left[\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right]$
subject to: $\alpha_{1}, \alpha_{2}, \alpha_{3} \geq 0 ; \alpha_{1}+\alpha_{2}-\alpha_{3}=0$

The Dual Problem, Example (2)

Consider the 3 points as below
Objective: maximize
$\alpha_{1}+\alpha_{2}+\alpha_{3}-\frac{1}{2}\left[\begin{array}{l}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right]^{T}\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 5 & 2 \\ 1 & 2 & 1\end{array}\right]\left[\begin{array}{l}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right]$
subject to: $\alpha_{1}, \alpha_{2}, \alpha_{3} \geq 0 ; \quad \alpha_{1}+\alpha_{2}-\alpha_{3}=0$

The Dual Problem, Example (3)

Substitute $\alpha_{3}=\alpha_{1}+\alpha_{2}$ and search for solution as a problem in α_{1}, α_{2}. After some straightforward computation, the original problem turns to:

$$
\text { maximize } 2\left(\alpha_{1}+\alpha_{2}\right)-\frac{1}{2}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right]^{T}\left[\begin{array}{cc}
4 & 6 \\
6 & 10
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right]
$$

subject to: $\alpha_{1}, \alpha_{2} \geq 0$. Solution: $\left(\alpha_{1}, \alpha_{2}\right)=\left(\frac{1}{2}, 0\right), \alpha_{3}=\frac{1}{2}+0=\frac{1}{2}$.

The Dual Problem, Example, Result

Result: $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\left(\frac{1}{2}, 0, \frac{1}{2}\right)$. The support vectors are \mathbf{x}_{1} and \mathbf{x}_{3} because their $\alpha_{i}>0$.
Vector $\mathbf{w}=\sum_{i=\{1,3\}} \alpha_{i} y_{i} \mathbf{x}_{i}=\frac{1}{2}(0,1)-\frac{1}{2}(0,-1)=(0,1)$.
Offset $b=y^{S}-\mathbf{w} \mathbf{x}^{S}=1-\mathbf{w} \mathbf{x}_{1}=-1-\mathbf{w} \mathbf{x}_{3}=0$.
Decision boundary $(0,1)^{T} \cdot \mathbf{x}=0$.

Soft Margin SVM

If the data are not linearly separable, slack variables ξ_{i} need to be introduced.

- Position and size of margin is implied by \mathbf{w} and b, as before.
- If a point (\mathbf{x}, y) fulfills the condition $y(\mathbf{w} \cdot \mathbf{x}+b) \geq 1$ then no penalty is paid.
- Otherwise, the condition is relaxed to $y(\mathbf{w} \cdot \mathbf{x}+b) \geq 1-\xi$ and penalty $C \cdot \xi$ is paid

$$
\begin{equation*}
\left(\mathbf{w}^{*}, b^{*}\right)=\underset{(\mathbf{w}, b)}{\operatorname{argmin}} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{N} \xi_{i} \tag{31}
\end{equation*}
$$

subject to:

$$
\begin{align*}
& y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}, \tag{32}\\
& \xi_{i} \geq 0 \tag{33}\\
& \forall i=1, \ldots, N
\end{align*}
$$

Soft Margin SVM

The primal problem

$$
\begin{align*}
&\left(\mathbf{w}^{*}, b^{*}\right)= \\
& \text { subject to: }\left.y_{i}(\mathbf{w}, b) \cdot \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}, \forall i=1, \ldots, N \tag{34}\\
& \xi_{i} \geq 0, \forall i=1, \ldots, N \tag{35}
\end{align*}
$$

The dual problem:

$$
\begin{align*}
& \alpha=\underset{\alpha}{\operatorname{argmax}}\left\{\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}\right\} \tag{36}\\
& \text { subject to: } \sum_{i} \alpha_{i} y_{i}=0 \tag{37}\\
& \qquad 0 \leq \alpha_{i} \leq C, \forall i \in\{1,2, \ldots, N\} \tag{38}
\end{align*}
$$

Linear SVMs: Overview

- The classifier is a separating hyperplane.
- Most "important" training points are support vectors; they define the hyperplane.
- Quadratic optimization algorithms can identify which training points \mathbf{x}_{i} are support vectors with non-zero Lagrangian multipliers h_{i}.
- Both in the dual formulation of the problem and in the solution training points appear only inside inner-products.

Who really need linear classifiers

- Datasets that are linearly separable with some noise, linear SVM work well:

- But if the dataset is non-linearly separable?

- How about... mapping data to a higher-dimensional space:

Non-linear SVMs: Feature spaces

- General idea: the original space can always be mapped to some higher-dimensional feature space where the training set becomes separable:

The "Kernel Trick"

- The SVM only relies on the inner-product between vectors $\mathbf{x}_{i} \cdot \mathbf{x}_{j}$
- If every datapoint is mapped into high-dimensional space via some transformation $\Phi: \mathbf{x} \rightarrow \varphi(\mathbf{x})$, the inner-product becomes:

$$
K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathfrak{j}}\right)=\varphi\left(\mathbf{x}_{\mathbf{i}}\right) \cdot \varphi\left(\mathbf{x}_{\mathrm{j}}\right)
$$

- $K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{j}\right)$ is called the kernel function.
- For SVM, we only need specify the kernel $K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{j}\right)$, without need to know the corresponding non-linear mapping, $\varphi(\mathbf{x})$.

Non-linear SVMs

- The dual problem:

$$
\text { Maximizing: } L(\mathbf{h})=\sum_{i=1}^{N} h_{i}-\frac{1}{2} \mathbf{h} \cdot \mathbf{D} \cdot \mathbf{h}
$$

Subject to : $\mathbf{h} \cdot \mathbf{y}=0$

$$
0 \leq \mathbf{h} \leq \mathrm{C}
$$

$$
\text { where } D_{i j}=y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

- Optimization techniques for finding h_{i} 's remain the same!
- The solution is:

$$
\begin{aligned}
\mathbf{w}^{*} & =\sum_{i \in S V} h_{i} y_{i} \varphi\left(\mathbf{x}_{i}\right) \\
f(\mathbf{x}) & =\mathbf{w}^{*} \cdot \varphi(\mathbf{x})+b^{*} \\
& =\sum_{i \in S V} h_{i} y_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right)+b^{*}
\end{aligned}
$$

Examples of Kernel Trick (1)

- For the example in the previous figure:
- The non-linear mapping

$$
x \rightarrow \varphi(x)=\left(x, x^{2}\right)
$$

- The kernel

$$
\begin{aligned}
& \varphi\left(x_{i}\right)=\left(x_{i}, x_{i}^{2}\right), \quad \varphi\left(x_{j}\right)=\left(x_{j}, x_{j}^{2}\right) \\
& K\left(x_{i}, x_{j}\right)=\varphi\left(x_{i}\right) \cdot \varphi\left(x_{j}\right) \\
& =x_{i} x_{j}\left(1+x_{i} x_{j}\right)
\end{aligned}
$$

- Where is the benefit?

Examples of Kernel Trick (2)

- Polynomial kernel of degree 2 in 2 variables
- The non-linear mapping:

$$
\begin{aligned}
& \mathbf{x}=\left(x_{1}, x_{2}\right) \\
& \varphi(\mathbf{x})=\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)
\end{aligned}
$$

- The kernel

$$
\begin{aligned}
& \varphi(\mathbf{x})=\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right) \\
& \begin{aligned}
\varphi(\mathbf{y})= & \left(1, \sqrt{2} y_{1}, \sqrt{2} y_{2}, y_{1}^{2}, y_{2}^{2}, \sqrt{2} y_{1} y_{2}\right) \\
K(\mathbf{x}, \mathbf{y}) & =\varphi(\mathbf{x}) \cdot \varphi(\mathbf{y}) \\
& =(1+\mathbf{x} \cdot \mathbf{y})^{2}
\end{aligned}
\end{aligned}
$$

Examples of kernel trick (3)

- Gaussian kernel:

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=e^{-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / 2 \sigma^{2}}
$$

- The mapping is of infinite dimension:

$$
\begin{aligned}
& \varphi(\mathbf{x})=\left(\ldots, \varphi_{\omega}(\mathbf{x}), \ldots\right), \quad \text { for } \omega \in R^{d} \\
& \varphi_{\omega}(\mathbf{x})=A e^{-B \omega^{2}} e^{-i w x} \\
& K(\mathbf{x}, \mathbf{y})=\int \varphi_{\omega}(\mathbf{x}) \varphi^{*}{ }_{\omega}(\mathbf{y}) d \omega
\end{aligned}
$$

- The moral: very high-dimensional and complicated non-linear mapping can be achieved by using a simple kernel!

What Functions are Kernels?

- For some functions $K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathfrak{j}}\right)$ checking that $K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathfrak{j}}\right)=\varphi\left(\mathbf{x}_{\mathbf{i}}\right) \cdot \varphi\left(\mathbf{x}_{\mathfrak{j}}\right)$ can be cumbersome.
- Mercer's theorem:

Every semi-positive definite symmetric function is a kernel

Examples of Kernel Functions

- Linear kernel: $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\mathbf{x}_{i} \cdot \mathbf{x}_{j}$
- Polynomial kernel of power p: $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(1+\mathbf{x}_{i} \cdot \mathbf{x}_{j}\right)^{p}$
- Gaussian kernel: $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=e^{-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / 2 \sigma^{2}}$
- In the form, equivalent to RBFNN, but has the advantage of that the center of basis functions, i.e., support vectors, are optimized in a supervised.
- Two-layer perceptron:

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\tanh \left(\alpha \mathbf{x}_{i} \cdot \mathbf{x}_{j}+\beta\right)
$$

Lifting Dimension by Polynomial Mapping of Degree d

Let $d \in \mathbb{N}$ and $\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{D}\right]^{\top} \in \mathbb{R}^{D}$.
Let $\phi_{d}(\mathbf{x})$ denote the mapping which lifts \mathbf{x} to the space containing all monomials of degree $d^{\prime}, 1 \leq d^{\prime} \leq d$ in the components of \mathbf{x} :

For example, when $\mathbf{x}=\left[x_{1}, x_{2}\right]^{\top} \in \mathbb{R}^{2}$,

$$
\begin{align*}
& \phi_{1}(\mathbf{x})=\left[x_{1}, x_{2}\right]^{\top}, \tag{39}\\
& \phi_{2}(\mathbf{x})=\left[x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right]^{\top}, \tag{40}\\
& \phi_{3}(\mathbf{x})=\left[x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}, x_{1}^{3}, x_{1}^{2} x_{2}, x_{1} x_{2}^{2}, x_{2}^{3}\right]^{\top} . \tag{41}
\end{align*}
$$

The number of monomials of degree d^{\prime} of $\mathbf{x} \in \mathbb{R}^{D}$ is $\binom{d^{\prime}+D-1}{d^{\prime}}$. The dimensionality L of the output space of $\phi_{d}(\mathbf{x})$ is thus

$$
\begin{equation*}
L=\sum_{d^{\prime}=1}^{d}\binom{d^{\prime}+D-1}{d^{\prime}} \tag{42}
\end{equation*}
$$

Lifting Dimension by Polynomial Mapping of Degree d

m p

Feature space dimensionality D, lifting by $\phi_{d}(\mathbf{x})$
dimensionality of feature space after lifting (L)

D	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	5	9	14	20	27	35	44
3	3	9	19	34	55	83	119	164
4	4	14	34	69	125	209	329	494
5	5	20	55	125	251	461	791	1286
6	6	27	83	209	461	923	1715	3002
7	7	35	119	329	791	1715	3431	6434
8	8	44	164	494	1286	3002	6434	12869

Lifting by Polynomial Mapping of Degree d, Example

$d=1, \operatorname{dim}\left(\phi_{d}(\mathbf{x})\right)=2$ support vectors : 3

$$
f(\mathbf{x})=\mathbf{w} \cdot \phi_{d}(\mathbf{x})+b
$$

$$
\begin{gathered}
d=2, \operatorname{dim}\left(\phi_{d}(\mathbf{x})\right)=5 \\
\text { support vectors : } 5
\end{gathered}
$$

Lifting by Polynomial Mapping of Degree d, Example

$d=3, \operatorname{dim}\left(\phi_{d}(\mathbf{x})\right)=9$ support vectors : 5

$$
d=4, \operatorname{dim}\left(\phi_{d}(\mathbf{x})\right)=14
$$

$$
\text { support vectors : } 6
$$

SVM Overviews

- Main features:
- By using the kernel trick, data is mapped into a highdimensional feature space, without introducing much computational effort;
- Maximizing the margin achieves better generation performance;
- Soft-margin accommodates noisy data;
- Not too many parameters need to be tuned.
- Demos(http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml)

SVM so far

- SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and gained increasing popularity in late 1990s.
- SVMs are currently among the best performers for many benchmark datasets.
- SVM techniques have been extended to a number of tasks such as regression [Vapnik et al. '97].
- Most popular optimization algorithms for SVMs are SMO [Platt '99] and SVM ${ }^{\text {light }}$ [Joachims' 99], both use decomposition to handle large size datasets.
- It seems the kernel trick is the most attracting site of SVMs. This idea has now been applied to many other learning models where the inner-product is concerned, and they are called 'kernel' methods.
- Tuning SVMs remains to be the main research focus: how to an optimal kernel? Kernel should match the smooth structure of data.

Appendix

Online demo: http://cs.stanford.edu/people/karpathy/svmjs/demo/

