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Statistical Estimation

• General setting:

– random variable X = a variable representing a random event

– sample space X = space of possible outcomes

– realization x = observed or hypothetical outcome

– set of probability distributions P over X parameterized by

some parameter vector θ, p(·; θ) ∈ P .

– E.g. p(·; θ) ≥ is a probabiliy density function
∫

X
p(x; θ)dx = 1

• Statistical estimation: given an observation or a set of

observations, infer an optimal parameter θ
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Maximum Likelihood Estimation

• Use likelihood as criterion to rate different hypotheses (θ).

• More convenient tu use so-called log-likelihood function

L(θ;x) = log p(x; θ)

• This means, a parameter θ is preferred over some θ̄, if the

observed data is more likely under θ than θ̄.

• Maximum Likelihood Estimation

θ̂ = arg max
θ

L(θ;x) = arg max
θ

log p(x; θ)

• i.i.d. sample x = x1, . . . ,xn: θ̂ = arg maxθ

∑n

i=1 log p(xi; θ)
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MLE: Gaussian Case

• Example: Gaussian distribution, X = R, θ = (µ, σ)′, probability

density

p(x;µ, σ) =
1√
2πσ

exp

[

−1

2

(

x − µ

σ

)2
]

• Maximum likelihood estimates

µ̂ =
1

n

n
∑

i=1

xi

σ̂2 =
1

n

n
∑

i=1

(xi − µ̂)2
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MLE: Multivariate Normal Distribution

• Multivariate normal

p(x;µ,Σ) =
1

(2π)
d

2 |Σ| 12
exp

[

−1

2
(x − µ)′Σ−1(x − µ)

]

• MLE

µ̂ =
1

n

n
∑

i=1

xi

Σ̂ =
1

n

n
∑

i=1

(xi − µ̂)(xi − µ̂)′
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MLE: Multivariate Normal Distribution
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Mixture Models (1)

• Statistical classification: assume that the observed patterns

x1, . . . ,xn belong to a certain number of K classes c1, . . . , cK .

• Assume further that we do not observe these classes, but rather a

mixture of patterns from different classes.

• For each class we assume that patterns are distributed according

to a class-conditional distribution pk(x; θk) parameterized by

θk, pk(x; θ) = p(x|C = ck; θk). Denote θ = (θ1, . . . , θK)′.

• These assumptions lead to a mixture model

p(x;π, θ) =
K
∑

k=1

πk pk(x; θk)

where πk is the prior probability of class ck (mixing proportions).
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Mixture Models (2)

• Notice that πk ≥ 0 and
∑K

k=1 πk = 1.

• A simple example of a density consisting of a mixture of three

Gaussians
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Why Mixture Models?

• Mixture models are more powerful than the component models

used for the class-conditional distribution

• Mixture models can capture multimodality and offer a systematic

way to define complex statistical models based on simpler ones.

• Mixture models can also be utilized to “unmix” the data, i.e. to

assign patterns to the unobserved classes (data clustering)

• Bayes rule: posterior probabilities

P (ck|x;π, θ) =
πk · pk(x; θk)

∑K

l=1 πl · pl(x; θl)
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MLE in Mixtures: Complete Data Log-Likelihood

• Key question: how to fit the parameters π, θ of a mixture model

• Expectation Maximization (EM) algorithm

• Introduce unobserved cluster membership variables zik ∈ {0, 1}
– zik = 1 denotes the fact that data point xi has been

generated from the k-th component or class

–
∑K

k=1 zik = 1 for all i = 1, . . . , n

• If membership variables were observed, then one could define the

so-called complete data log-likelihood,

Lc(π, θ;x, z) =

n
∑

i=1

K
∑

k=1

zik [log pk(xi; θk) + log πk]
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MLE in Mixtures: Observed Data Log-Likelihood

• Since class membership variables z are not observed, we only

have access to the observed data log-likelihood

L(π, θ;x) =
n
∑

i=1

log p(xi; θ) =
n
∑

i=1

log
K
∑

k=1

πkpk(xi; θk),

• Problem: direct maximization is difficult (logarithm of a sum

effectively introduces complicated couplings)
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Statistical Models with Unobserved Variables

• Imagine we would have some estimate of what the unobserved

variables could be:

Qik = Pr(zik = 1) = probability that xi belongs to cluster ck

• Try to maximize the expected complete data log-likelihood

EQ [Lc(π, θ;x, z)] =
n
∑

i=1

K
∑

k=1

Qik [log pk(xi; θk) + log πk] .

• Q is called a variational distribution (we don’t know yet how to

chose it appropriately)
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Expected Complete Data Log-Likelihood

• Consider the following line of argument

L(π, θ;x) =

n
∑

i=1

log p(xi;π, θ) =

n
∑

i=1

log

K
∑

k=1

πkpk(xi; θk)

=
n
∑

i=1

log
K
∑

k=1

Qik

πkpk(xi; θk)

Qik

≥
n
∑

i=1

K
∑

k=1

Qik log
πkpk(xi; θk)

Qik

= L(π, θ,Q;x)

• Inequality follows from the concavity of the logarithm, or more

specifically from Jensen’s inequality.
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Jensen’s Inequality

• Jensen’s inequality: for a convex function f and any probability

mass function p

E[f(x)] =
∑

x

p(x)f(x) ≥ f

(

∑

x

p(x)x

)

= f(E[x])

• Proof uses a simple inductive argument over the state space size.
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Variational Upper Bound

• No matter what Q is, we will get a lower bound on the

log-likelihood function.

• Instead of maximizing L directly, we can hence try to maximize

the (simpler) lower bound L(θ, π,Q;x) w.r.t. the parameters

θ and π.
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Expectation Maximization Algorithm (1)

• Each choice of Q defines a different lower bound L(θ, π,Q;x)

• Key idea: optimize lower bound also w.r.t. Q. Get tightest

lower bound for a given estimate of θ.

• Alternation scheme, maximizes L(π, θ,Q;x) in every step.

– E-step: Q(t+1) = arg maxQ L(π(t), θ(t), Q;x)

– M-step: (π(t+1), θ(t+1)) = arg maxπ,θ L(θ, π,Q(t+1);x)

• M-step optimizes a lower bound instead of the true likelihood

function

• E-step adjusts the bound
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Expectation Maximization Algorithm (2)

• What does that have to do with the function we referred to as

expected complete data log-likelihood above?

L(π, θ,Q;x) =
n
∑

i=1

K
∑

k=1

Qik log
πkpk(xi; θk)

Qik

=
n
∑

i=1

K
∑

k=1

Qik log πkpk(xi; θk) −
n
∑

i=1

K
∑

k=1

Qik log Qik

= EQ [Lc(π, θ;x, z)] −
n
∑

i=1

K
∑

k=1

Qik log Qik

• Second term: entropy of Q (does not depend on π or θ)

• Maximizing L(π, θ,Q;x) is the same as maximizing the expected

complete data log-likelihood.
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Expectation Maximization Algorithm (3)

• How about the E-step?

• It is easy to find a general answer to how Q should be chosen.

• Posterior probability Q∗

ik ≡ Pr(zik = 1|xi;π, θ) maximizes

L(π, θ,Q;x) for given π and θ.

• Proof: insert this choice for Q∗ into L(π, θ,Q;x)

L(π, θ,Q∗;x) =

n
∑

i=1

K
∑

k=1

Q∗

ik log
πk pk(xi; θk)

Q∗

ik

=
n
∑

i=1

K
∑

k=1

Q∗

ik log p(xi;π, θ) = L(π, θ;x)

• Since L(π, θ,Q;x) ≤ L(π, θ;x) for all Q, equality is optimal.
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Normal Mixture Model

• In the case of a mixture of multivariate normal distributions:

• M-step: differentiating expected complete data log-likelihood

• Mixing proportions π̂k = 1
n

∑n

i=1 Qik

• Normal model

µ̂k =

∑n

i=1 Qikxi
∑n

i=1 Qik

Σ̂k =

∑n

i=1 Qik(xi − µ̂k)(xi − µ̂k)
′

∑n

i=1 Qik

.
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Normal Mixture Model (2)

• E-Step

Qik =
πk|Σk|−

1

2 exp
[

−1
2
(xi − µk)Σ

−1
k (xi − µk)

]

∑K

l=1 πl|Σl|−
1

2 exp
[

−1
2
(xi − µl)Σ

−1
l (xi − µl)

]
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EM for Normal Mixture Model

1: initialize µ̂k at random

2: initialize Σ̂k = σ2
I, where σ2 is the overall data variance

3: repeat

4: for each data point xi do

5: for each component k = 1, . . . ,K do

6: compute posterior probability Qik

7: end for

8: end for

9: for each component k = 1, . . . ,K do

10: compute µ̂k, Σ̂k, π̂k

11: end for

12: until convergence
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