Normalizing Flows

David Coufal
Institute of Computer Science
The Czech Academy of Sciences
david.coufal@cs.cas.cz

Vision for Robotics - FEL CTU December 5, 2022

Introduction

- data $D=\left\{\boldsymbol{x}_{i} \in \mathbb{R}^{d}\right\}_{i=1}^{n}$ comes from distribution P_{D} i.e., we assume that there exists a random variable D with values in $\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right.$) such that $D \sim P_{D}$
- How to specify P_{D} on the basis of D ?

Introduction

- specification of cdf is possible, but the most common approach is to specify a density $p_{D}: \mathbb{R}^{d} \rightarrow[0, \infty)$ of P_{D}

$$
P_{D}(A)=\int_{A} p_{D}(\boldsymbol{x}) d \boldsymbol{x} \quad \text { for } A \in \mathcal{B}\left(\mathbb{R}^{d}\right)
$$

- How to get the density from empirical data?

Introduction

- if $p_{D} \in\left\{p_{\theta}, \theta \in \Theta\right\}$ (a parametric set of densities) task reduces to estimate best parameter θ^{*} from data $D=\left\{\boldsymbol{x}_{i} \in \mathbb{R}^{d}\right\}_{i=1}^{n}$ and set $p_{D}=p_{\theta^{*}}$
- maximum likelihood estimation

$$
\begin{aligned}
\theta_{\mathrm{mle}} & =\operatorname{argmax}_{\theta} \mathbb{E}_{\boldsymbol{x} \sim P_{D}} \log p_{\theta}(\boldsymbol{x}) \\
\theta_{\mathrm{mle}}^{*} & =\operatorname{argmax}_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}\left(\boldsymbol{x}_{i}\right)
\end{aligned}
$$

Introduction

- maximum likelihood estimation

$$
\begin{aligned}
\theta_{\mathrm{mle}} & =\operatorname{argmax}_{\theta} \mathbb{E}_{\boldsymbol{x} \sim P_{D}} \log p_{\theta}(\boldsymbol{x}) \\
\theta_{\mathrm{mle}}^{*} & =\operatorname{argmax}_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}\left(\boldsymbol{x}_{i}\right)
\end{aligned}
$$

- optimization in terms of KL-divergence

$$
\begin{aligned}
\theta_{\mathrm{mle}} & =\operatorname{argmin}_{\theta} D_{\mathrm{KL}}\left(P_{D}(\boldsymbol{x}) \| P_{\theta}(\boldsymbol{x})\right) \\
& =\operatorname{argmin}_{\theta} \int p_{D}(\boldsymbol{x}) \frac{p_{D}(\boldsymbol{x})}{p_{\theta}(\boldsymbol{x})} d \boldsymbol{x}
\end{aligned}
$$

MLE in terms of KL-divergence

- best approximation of P_{D} using P_{θ}

$$
\text { - } \widehat{P}_{D} \text { proxy for } P_{D}, \widehat{P}_{D}(d x)=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}(d x) \text { (Dirac m.) }
$$

- P_{θ} - model distribution with density p_{θ}
- maximization MLE $=$ minimization of $D_{K L}\left(P_{D} \| P_{\theta}\right)$

$$
\begin{aligned}
D_{\mathrm{KL}}\left(P_{D} \| P_{\theta}\right) & =\int \log \frac{d P_{D}}{d P_{\theta}} d P_{D}=\int \log \frac{p_{D}(\boldsymbol{x})}{p_{\theta}(\boldsymbol{x})} d P_{D} \\
& =\int \log p_{D}(\boldsymbol{x}) d P_{D}-\int \log p_{\theta}(\boldsymbol{x}) d P_{D} \\
& \approx-H\left[P_{D}\right]-\int \log p_{\theta}(\boldsymbol{x}) d \widehat{P}_{D}\left(P_{D} \approx \widehat{P}_{D}\right) \\
& \propto-\int \log p_{\theta}(\boldsymbol{x}) d \widehat{P}_{D} \text { (integration over Dirac) } \\
& \propto-\underbrace{\frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}\left(\boldsymbol{x}_{i}\right)}_{=\mathrm{MLE}}
\end{aligned}
$$

Information projection

- let $P \in \mathcal{P}$ is fixed, and $\mathcal{Q} \subset \mathcal{P}$ (subset of prob. distributions)

$$
Q^{*}=\operatorname{argmin}_{Q \in \mathcal{Q}} D_{\mathrm{KL}}(P \| Q),
$$

Q^{*} is the closest distribution from subset of \mathcal{Q} to P

Specification of $\mathcal{Q} \subset \mathcal{P}$

- via parametrized densities
i.e., $\mathcal{Q}=\left\{p_{\theta}, \theta \in \Theta\right\}$, optimal parameter θ^{*} identified using MLE, which is a specific solution to the information projection problem based on densities
- p_{θ}^{*} is used to approximate the real denstity of P_{D}, i.e,

$$
p_{\theta^{*}} \approx p_{D}=P_{D} d x
$$

- How to sample from a given density/distribution?

Specification of $\mathcal{Q} \subset \mathcal{P}$

- via parametrized transformations
X has some simple distribution which is easy to sample from and is transformed to a complex one using a deterministic function G
e.g., let $X \sim N(0,1)$ then $X^{2} \sim \chi^{2}(1)$ and $G(z)=z^{2}$
- \mathcal{Q} is given by set of parametrized functions $G_{\theta}, \theta \in \Theta$ (neural networks parametrized via their weights)
- easy sampling from $G_{\theta}(X)$, sample $\boldsymbol{x} \sim X$ (easy) and then pass x through $G_{\theta}(X)$, i.e., compute $G_{\theta}(x)$
- How to solve the information projection problem that is based on transformations?

GANs

- solution to the information projection problem JS-divergence minimalization via playing an adversial game between generator and discriminator

GANs

- GANs are Iearn adverisialy to minimize

$$
D_{\mathrm{JSD}}\left(P_{D} \| P_{G_{\theta}}\right)
$$

by adjusting parameters θ of generator

- setting properly adverisial learning is still more of an art than a strictly procedural matter
- there is no straithforward inverse procedure to find a latent z^{*} to the given \boldsymbol{x}^{*} and directly evaluate

$$
p_{G_{\theta}}\left(\boldsymbol{x}^{*}\right)=p_{G_{\theta}}\left(G_{\theta}\left(\boldsymbol{z}^{*}\right)\right)
$$

- or even better, to find a latent $\boldsymbol{z}_{\text {real }}$ to a given $\boldsymbol{x}_{\text {real }}$
- invertibility of the generator

Conditional BEGAN

- each image has its latent $\boldsymbol{z}=\left(\boldsymbol{z}_{100}, \boldsymbol{c}_{2}\right)$

$$
z_{100} \in \mathbb{R}^{100}, z_{i} \sim \mathcal{N}(0,1) \text { and } c_{2} \in\{-1,1\}^{2}
$$

- c encodes man/woman, w/o glasses, image $=G_{\theta}(z)$

Conditional BEGAN

- linear approximation between two latents, $\boldsymbol{z}_{1}, \boldsymbol{z}_{2}$ (condition fixed)

$$
z_{t}=z_{1}+t / 13 *\left(z_{2}-z_{1}\right), \quad t=0, \ldots, 13
$$

- smooth transition

Conditional BEGAN

- different conditions for the same latent z_{100}
- properties manipulation

FDA approval rate, https://insilico.com

Normalizing flows

- normalizing flows can be treated as invertible neural networks
- based on invertible differentiable bijections, which assures 1-to-1 correspondence, i.e., $\boldsymbol{z} \leftrightarrow \boldsymbol{x}$, and so invertibility
- exact evaluation of generative density

$$
p_{G_{\theta}}(\boldsymbol{x})=p_{G_{\theta}}\left(G_{\theta}(\boldsymbol{z})\right)
$$

which allows learning via maximum likelihood estimation

- a couple of tricks to make computation, learning and inversion procedure effective
- still, computationally more demanding than GANs less quality results

Diffeomorphism on \mathbb{R}^{d}

- a function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is called diffeomorphism if it is bijective, differentiable and has a differentiable inversion g^{-1}

source: https://arxiv.org/abs/1310.1710
- differentiable space deformation

Change of variable formula on \mathbb{R}^{d}

- distribution transformation under diffeomorphism
- let P_{Z} be a distribution on \mathbb{R}^{d} with density $p_{Z}(z)$, g diffeomorphism on \mathbb{R}^{d} and $\boldsymbol{x}=g(\boldsymbol{z})$, i.e., $\boldsymbol{z}=g^{-1}(\boldsymbol{x})$; then \boldsymbol{x} has distribution P_{X} with density

$$
p_{X}(\boldsymbol{x})=p_{Z}\left(g^{-1}(\boldsymbol{x})\right) \cdot\left|\operatorname{det}\left(\mathrm{J}_{g^{-1}}(\boldsymbol{x})\right)\right|
$$

- where $J_{g^{-1}}$ is the Jacobian of g^{-1} (it is a $d \times d$ functional matrix) at point $\boldsymbol{x} \in \mathbb{R}^{d}$, $\operatorname{det}(\cdot)$ stands for determinant and $|\cdot|$ is the absolute value

Density transformation on \mathbb{R}^{d}

- $g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ diffeomorphism with inversion $f=g^{-1}$
- let $\boldsymbol{x}=g(\boldsymbol{z}), \boldsymbol{z} \sim p_{Z}(\boldsymbol{z})$, then $\boldsymbol{x} \sim p_{X}(\boldsymbol{x})$ and

$$
p_{X}(\boldsymbol{x})=p_{Z}(f(\boldsymbol{x})) \cdot\left|\operatorname{det}\left(\mathrm{J}_{f}(\boldsymbol{x})\right)\right|
$$

- J_{f} is the Jacobian of f, i.e., if $f=\left(f_{1}(\boldsymbol{x}), \ldots, f_{d}(\boldsymbol{x})\right)$, then

$$
J_{f}(\boldsymbol{x})=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(\boldsymbol{x}) & \cdots & \frac{\partial f_{d}}{\partial x_{d}}(\boldsymbol{x}) \\
\vdots & \cdots & \vdots \\
\frac{\partial f_{d}}{\partial x_{1}}(\boldsymbol{x}) & \cdots & \frac{\partial f_{d}}{\partial x_{d}}(\boldsymbol{x})
\end{array}\right]
$$

Terminology

- g direction: generative or forward direction, from easy to a complex distribution
- $f=g^{-1}$ direction: flow or backward direction, from complex to an easy distribution - normalization of the complex distribution, it holds literally when Z has a normal distribution

Base distribution, \mathbf{Z}
 direction

Composite flow

- let $g_{1}, g_{2}, \ldots, g_{K}$ be a set of diffeomorphisms, then

$$
g(\boldsymbol{z})=g_{K}\left(g_{K-1}\left(\ldots\left(g_{1}(\boldsymbol{z})\right)\right)\right)=g_{K} \circ g_{K-1} \circ \cdots \circ g_{1}
$$

is also a diffeorphism

- denoting $f_{k}=g_{k}^{-1}, k=1, \ldots, K$ and $f=g^{-1}$ then inverse of g writes as

$$
g^{-1}=f(\boldsymbol{x})=f_{1}\left(f_{2}\left(\ldots\left(f_{K}(\boldsymbol{x})\right)\right)\right)=f_{1} \circ f_{2} \circ \cdots \circ f_{K}
$$

- a composite flow is composed from simple flows

Jacobian of a composite flow

- composite flow
- if $f=f_{1} \circ f_{2} \circ \cdots \circ f_{K}$, then

$$
\operatorname{det}\left(\mathrm{J}_{f}(\boldsymbol{x})\right)=\mathrm{J}_{f_{1} \circ f_{2} \circ \cdots \circ f_{K}}(\boldsymbol{x})=\prod_{k=1}^{K} \operatorname{det}\left(\mathrm{~J}_{f_{k}}\left(\boldsymbol{x}_{k}\right)\right)
$$

- the transformation formula has telescopic form

$$
p_{X}(\boldsymbol{x})=p_{Z}\left(f_{1} \circ \cdots \circ f_{K}(\boldsymbol{x})\right) \cdot \prod_{k=1}^{K}\left|\operatorname{det}\left(J_{f_{k}}\left(\boldsymbol{x}_{k}\right)\right)\right|
$$

Factorization of transformed density

- logarithm of transformed density

$$
\log \left(p_{X}(\boldsymbol{x})\right)=\log \left(p_{Z}\left(f_{1} \circ \cdots \circ f_{K}(\boldsymbol{x})\right)\right)+\sum_{k=1}^{K} \log \left(\left|\operatorname{det}\left(\mathrm{~J}_{f_{k}}\left(\boldsymbol{x}_{k}\right)\right)\right|\right)
$$

- simple flows f_{k} are parametrized

$$
\boldsymbol{z}=f_{k}\left(\boldsymbol{x} ; \boldsymbol{\theta}_{k}\right)
$$

- MLE optimization, $\mathcal{D}=\left\{\boldsymbol{x}^{i}\right\}_{i=1}^{N}$, w.r.t. $\boldsymbol{\theta}=\left(\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{k}\right)$

$$
\boldsymbol{\theta}^{*}=\max _{\boldsymbol{\theta}} \sum_{i=1}^{N}\left[\log \left(p_{Z}\left(f_{1} \circ \ldots f_{K}\left(\boldsymbol{x}^{i} ; \boldsymbol{\theta}\right)\right)\right)+\sum_{k=1}^{K} \log \left(\left|\operatorname{det}\left(\mathrm{~J}_{f_{k}}\left(\boldsymbol{x}_{k}^{i} ; \boldsymbol{\theta}_{k}\right)\right)\right|\right)\right]
$$

Elementwise flow

- based on univariate differentiable bijections $h_{i}: \mathbb{R} \rightarrow \mathbb{R}$
- $g(\boldsymbol{z})=\left(h_{1}\left(z_{1}\right), h_{2}\left(z_{2}\right), \ldots, h_{d}\left(z_{d}\right)\right)$
- $f(\boldsymbol{x})=\left(h_{1}^{-1}\left(x_{1}\right), h_{2}^{-1}\left(x_{2}\right), \ldots, h_{d}^{-1}\left(x_{d}\right)\right)$
- Jacobian is diagonal matrix with entries

$$
J_{f}(\boldsymbol{x})=\operatorname{diag}(f(\boldsymbol{x}))=\operatorname{diag}\left(\left(h_{1}^{-1}\left(x_{1}\right), h_{2}^{-1}\left(x_{2}\right), \ldots, h_{d}^{-1}\left(x_{d}\right)\right)\right)
$$

- determinant of J_{f} is product of its diagonal elements

$$
\operatorname{det}\left(\mathrm{J}_{f}(\boldsymbol{x})\right)=\prod_{i=1}^{d} \frac{\mathrm{~d} h^{-1}}{\mathrm{~d} x_{i}}\left(x_{i}\right)
$$

Linear flow

- let $g(\boldsymbol{z})=A \boldsymbol{z}+\boldsymbol{b}$ where A is an invertible matrix
- for inversion one has $f(\boldsymbol{x})=A^{-1}(\boldsymbol{x}-\boldsymbol{b})$
- Jacobian is constant and equals to A^{-1} and therefore

$$
\operatorname{det}\left(J_{f}(x)\right)=\operatorname{det}\left(A^{-1}\right)=\operatorname{det}(A)^{-1}
$$

- low expresibility, only linear transformations, a normal distribution transforms to a normal distribution
- generally, costly computation of J_{f}, it is $O\left(d^{3}\right)$

Coupling flow

- $\boldsymbol{x} \in \mathbb{R}^{d}$, split of $\boldsymbol{x}=\left(\boldsymbol{x}^{D}, \boldsymbol{x}^{B}\right), \boldsymbol{x}^{A} \in \mathbb{R}^{d}, \boldsymbol{x}^{B} \in \mathbb{R}^{D-d}$ let $h_{\theta}: \mathbb{R}^{D-d} \rightarrow \mathbb{R}^{D-d}, \theta \in \mathbb{R}^{D-d}$ be a parametrized bijection and Θ arbitrary function, $\Theta: \mathbb{R}^{d} \rightarrow \mathbb{R}^{D-d}$
- coupling flow then reads as $f(\boldsymbol{x})=\left(\boldsymbol{z}^{A}, \boldsymbol{z}^{B}\right)$, where

$$
\begin{aligned}
& z^{A}=\boldsymbol{x}^{A} \\
& \boldsymbol{z}^{B}=h_{\theta}\left(\boldsymbol{x}^{B}\right)=h\left(x^{B} ; \theta=\Theta\left(\boldsymbol{x}^{A}\right)\right)
\end{aligned}
$$

and h_{θ} is called a coupling function

- inverse $g(\boldsymbol{z})=\left(\boldsymbol{x}^{A}, \boldsymbol{x}^{B}\right)$ then reads as

$$
\begin{aligned}
& x^{A}=z^{A} \\
& x^{B}=h_{\theta}^{-1}\left(z^{B}\right)=h^{-1}\left(z^{B} ; \theta=\Theta\left(z^{A}\right)\right)
\end{aligned}
$$

Coupling flow - Jacobian

- standard coupling flow

$$
\begin{aligned}
& \boldsymbol{z}^{A}=\boldsymbol{x}^{A} \\
& \boldsymbol{z}^{B}=h_{\theta}\left(\boldsymbol{x}^{B}\right)=h\left(\boldsymbol{x}^{B} ; \Theta\left(\boldsymbol{x}^{A}\right)\right)
\end{aligned}
$$

- coupling functions $h_{\theta}: \mathbb{R}^{D-d} \rightarrow \mathbb{R}^{D-d}$ are applied to \boldsymbol{x}_{B} elementwise

$$
h(\cdot, \boldsymbol{\theta})=\left(h_{1}\left(x_{1}^{B}, \theta_{1}\right), h_{2}\left(x_{2}^{B}, \theta_{2}\right), \ldots, h_{D-d}\left(x_{D-d}^{B}, \theta_{d}\right)\right)
$$

where each $h_{i}\left(\cdot, \theta_{i}\right)$ is a scalar differentiable bijection

Coupling flow - Jacobian

- then the Jacobian is a lower triangular matrix

$$
\begin{aligned}
\mathrm{J}_{f} & =\left[\begin{array}{cc}
\mathbb{I}_{d} & 0 \\
\frac{\partial \boldsymbol{z}^{B}}{\partial \boldsymbol{x}^{A}} & \frac{\partial \boldsymbol{z}^{B}}{\partial \boldsymbol{x}^{B}}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathbb{I}_{d} & 0 \\
\frac{\partial h\left(\boldsymbol{x}^{B}, \Theta\left(\boldsymbol{x}^{A}\right)\right)}{\partial \boldsymbol{x}^{A}} & \frac{\partial h\left(\boldsymbol{x}^{B}, \Theta\left(\boldsymbol{x}^{A}\right)\right)}{\partial \boldsymbol{x}^{B}}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathbb{I}_{d} & 0 \\
\frac{\partial h\left(\boldsymbol{x}^{B}, \Theta\left(\boldsymbol{x}^{A}\right)\right)}{\partial \boldsymbol{x}^{A}} & \operatorname{diag}\left(\partial h_{i}\left(\cdot, \theta_{i}\right) / \partial x_{i}^{B}\right)
\end{array}\right]
\end{aligned}
$$

- determinant is then product of the diagonal elements of J_{f}

Coupling flow

- a concrete example

$$
\begin{aligned}
\boldsymbol{z}^{1: d} & =\boldsymbol{x}^{1: d} \\
\boldsymbol{z}^{d+1: D} & =\boldsymbol{x}^{d+1: D} \odot \exp \left(s_{\theta}\left(\boldsymbol{x}^{1: d}\right)\right)+t_{\theta}\left(\boldsymbol{x}^{1: d}\right)
\end{aligned}
$$

where $s_{\theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{D-d}, t_{\theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{D-d}$ are neural networks

- \odot is the elementwise product, i.e,

$$
\boldsymbol{x} \odot \boldsymbol{y}=\left(x_{1} y_{1}, \ldots, x_{d} y_{d}\right)
$$

- inverse reads as

$$
\begin{aligned}
x^{1: d} & =z^{1: d} \\
x^{d+1: D} & =\left(z^{d+1: D}-t_{\theta}\left(z^{1: d}\right)\right) \odot \exp \left(-s_{\theta}\left(z^{1: d}\right)\right)
\end{aligned}
$$

Coupling flow - expressibility

- going from layer to layer in a composite flow variables must be somehow permuted to allow for complex relation modelling
- standard approach is to apply random permutations when creating the flow and split dimensions in half
- more complex schema are possible, e.g., alternating pixels or blocks of channels, which is called masking
- computational complexity of Jacobian is $O(D)$

Coupling flow - multiscale architecture

- noise vector is introduced along length of the flow which decreases complexity of computations

source: https://arxiv.org/abs/1908.09257

Autoregressive flow

- autoregressive model of p-th order $A R(p)$ has form

$$
\begin{aligned}
X_{t} & =\sum_{i=1}^{p} \varphi_{t} X_{t-i}+\epsilon_{t}, \quad \epsilon_{t} \sim \mathcal{N}(0,1) \\
X_{t} & =h_{t}\left(\epsilon_{t}, \sum_{i=1}^{p} \varphi_{t} X_{t-i}\right) \\
X_{t} & =h_{t}\left(\epsilon_{t}, \Theta_{t}\left(X_{t-1: t-p}\right)\right)
\end{aligned}
$$

- in autoregressive flows the above schema is generalized
- h_{t} is a differentiable bijection a Θ_{t} is an arbitrary function typically represented by a neural network

Autoregressive flow

- let h_{θ} is parametrized differentiable bijection construct $g: \mathbb{R}^{D} \rightarrow \mathbb{R}^{D}$,

$$
\left(x_{1}, \ldots x_{D}\right)=x=g(\boldsymbol{z})
$$

in autoregressive manner, i.e.,

$$
x_{i}=h\left(z_{i} ; \Theta_{i}\left(\boldsymbol{x}_{1: i-1}\right)\right), i=1, \ldots, D
$$

with $\Theta_{1}=\theta_{1}$ being a constant and Θ_{i} arbitrary functions defined on respective domains

- inverse $\left(z_{1}, \ldots z_{D}\right)=f(\boldsymbol{x})$, then reads as

$$
z_{i}=h^{-1}\left(x_{i} ; \Theta_{i}\left(x_{1: i-1}\right)\right), i=1, \ldots, D, \Theta_{1}=\theta_{1}
$$

no autoregressive structure

Autoregressive flow

- Jacobian of f is a lower triangular matrix
- with determinant

$$
\operatorname{det}\left(\mathrm{J}_{f}(\boldsymbol{x})\right)=\prod_{k=1}^{D} \frac{\partial h^{-1}\left(x_{i} ; \Theta_{i}\left(\boldsymbol{x}_{1: i-1}\right)\right)}{\partial x_{i}}
$$

- example

$$
x_{i}=z_{i} \cdot \exp \left(s_{\theta}\left(\boldsymbol{x}_{1: i-1}\right)\right)+t_{\theta}\left(\boldsymbol{x}_{1: i-1}\right) \quad \text { and } z_{i} \sim \mathcal{N}(0,1)
$$

- tight connection to coupling flows

Masked autoregressive flow

- masking (MAF) allows for one-pass computation of $f(x)$ (fast evaluation of likelihood)

$$
z_{i}=h^{-1}\left(x_{i} ; \Theta_{i}\left(\boldsymbol{x}_{1: i-1}\right)\right) \quad \text { (parallel via masking) }
$$

- however sampling (generative direction), i.e., computing $g(z)$, is inherently sequential (slow)

$$
x_{i}=h\left(z_{i} ; \Theta_{i}\left(x_{1: i-1}\right)\right) \quad \text { (sequential) }
$$

Autoregresive flow

- masked autoregresive flows (MAF)
- fast likelihood, slow sampling

- inverse autoregresive flows (IAF)
- fast sampling, slow likelihood

Conditional autoregresive flow

- natural extension to conditional version, by augmenting input with class information
- for a training point $\{\boldsymbol{x}, \boldsymbol{c}\}$, we incorporate \boldsymbol{c} into the θ parameter to get conditional density

$$
\begin{gathered}
p_{X}(\boldsymbol{x} \mid \boldsymbol{c})=p_{Z}(f(\boldsymbol{x} \mid \boldsymbol{c})) \cdot\left|\operatorname{det}\left(\mathrm{J}_{f}(\boldsymbol{x} \mid \boldsymbol{c})\right)\right| \\
z_{i}=h^{-1}\left(x_{i} ; \Theta_{i}\left(\boldsymbol{x}_{1: i-1}, \boldsymbol{c}\right)\right), i=1, \ldots, D
\end{gathered}
$$

- conditional sampling

$$
x_{i} \mid \boldsymbol{c}=h\left(z_{i} ; \Theta_{i}\left(\boldsymbol{x}_{1: i-1}, \boldsymbol{c}\right)\right), i=1, \ldots, D
$$

NICE (2014)

- L. Dinh, D. Krueger, Y. Bengio:

NICE: Non-linear Independent Component Estimation

 https://arxiv.org/abs/1410.8516$$
\begin{aligned}
& h_{I_{1}}^{(1)}=x_{I_{1}} \\
& h_{I_{2}}^{(1)}=x_{I_{2}}+m^{(1)}\left(x_{I_{1}}\right) \\
& h_{I_{2}}^{(2)}=h_{1_{2}}^{(1)} \\
& h_{I_{1}}^{(2)}=h_{I_{1}}^{(1)}+m^{(2)}\left(x_{I_{2}}\right) \\
& h_{I_{1}}^{(3)}=h_{I_{1}}^{(2)} \\
& h_{I_{2}}^{(3)}=h_{I_{2}}^{(2)}+m^{(3)}\left(x_{I_{1}}\right) \\
& h_{1_{2}}^{(4)}=h_{1_{2}}^{(3)} \\
& h_{I_{1}}^{(4)}=h_{I_{1}}^{(3)}+m^{(4)}\left(x_{I_{2}}\right) \\
& h=\exp (s) \odot h^{(4)}
\end{aligned}
$$

The coupling functions $m^{(1)}, m^{(2)}, m^{(3)}$ and $m^{(4)}$ used for the coupling layers are all deep rectified networks with linear output units. We use the same network architecture for each coupling function: five hidden layers of 1000 units for MNIST, four of 5000 for TFD, and four of 2000 for SVHN and CIFAR-10.

NICE (2014)

- four standard ML datasets

MNIST - Handwritten digit dataset - 28×28 (grayscale)
TFD - Toronto Faces Dataset - 32×32 (grayscale) SVHN - The Street View House Numbers - 32x32 RGB CIFAR-10-32x32 RGB images in 10 classes

- numerical results

Dataset	MNIST	TFD	SVHN	CIFAR-10
\# dimensions	784	2304	3072	3072
Preprocessing	None	Approx. whitening	ZCA	ZCA
\# hidden layers	5	4	4	4
\# hidden units	1000	5000	2000	2000
Prior	logistic	gaussian	logistic	logistic
Log-likelihood	1980.50	5514.71	11496.55	5371.78

Figure 3: Architecture and results. \# hidden units refer to the number of units per hidden layer.

NICE (2014)

- sampling

Figure 5: Unbiased samples from a trained NICE model. We sample $h \sim p_{H}(h)$ and we output $x=f^{-1}(h)$.

Real NVP (ICLR 2017)

- L. Dinh, J. Sohl-Dickstein, S. Bengio:

Density Estimation Using Real NVP

https://arxiv.org/abs/1605.08803
but which depends on the remainder of the input vector in a complex way. We refer to each of these simple bijections as an affine coupling layer. Given a D dimensional input x and $d<D$, the output y of an affine coupling layer follows the equations

$$
\begin{align*}
y_{1: d} & =x_{1: d} \tag{4}\\
y_{d+1: D} & =x_{d+1: D} \odot \exp \left(s\left(x_{1: d}\right)\right)+t\left(x_{1: d}\right), \tag{5}
\end{align*}
$$

where s and t stand for scale and translation, and are functions from $R^{d} \mapsto R^{D-d}$, and \odot is the Hadamard product or element-wise product (see Figure 2(a)).

3.3 Properties

The Jacobian of this transformation is

$$
\frac{\partial y}{\partial x^{T}}=\left[\begin{array}{cc}
\mathbb{I}_{d} & 0 \tag{6}\\
\frac{\partial y_{d+1: D}}{\partial x_{1: d}^{1}} & \operatorname{diag}\left(\exp \left[s\left(x_{1: d}\right)\right]\right)
\end{array}\right]
$$

Real NVP (ICLR 2017)

- masked convolutions

Figure 3: Masking schemes for affine coupling layers. On the left, a spatial checkerboard pattern mask. On the right, a channel-wise masking. The squeezing operation reduces the $4 \times 4 \times 1$ tensor (on the left) into a $2 \times 2 \times 4$ tensor (on the right). Before the squeezing operation, a checkerboard pattern is used for coupling layers while a channel-wise masking pattern is used afterward.
(see Figure 2(b)),

$$
\begin{array}{r}
\begin{cases}y_{1: d} & =x_{1: d} \\
y_{d+1: D} & =x_{d+1: D} \odot \exp \left(s\left(x_{1: d}\right)\right)+t\left(x_{1: d}\right)\end{cases} \\
\Leftrightarrow \begin{cases}x_{1: d} & =y_{1: d} \\
x_{d+1: D} & =\left(y_{d+1: D}-t\left(y_{1: d}\right)\right) \odot \exp \left(-s\left(y_{1: d}\right)\right),\end{cases} \tag{8}
\end{array}
$$

meaning that sampling is as efficient as inference for this model. Note again that computing the inverse of the coupling layer does not require computing the inverse of s or t, so these functions can be arbitrarily complex and difficult to invert.

3.4 Masked convolution

Partitioning can be implemented using a binary mask b, and using the functional form for y,

$$
\begin{equation*}
y=b \odot x+(1-b) \odot(x \odot \exp (s(b \odot x))+t(b \odot x)) \tag{9}
\end{equation*}
$$

Real NVP (ICLR 2017)

- results on CelebA

Figure 8: Samples from a model trained on CelebA.

Glow (2018)

- D. P. Kingma, P. Dhariwal :

Glow: Generative Flow with Invertible 1x1 Convolutions https://arxiv.org/abs/1807.03039

Figure 2: We propose a generative flow where each step (left) consists of an actnorm step, followed by an invertible 1×1 convolution, followed by an affine transformation (Dinh et al., 2014). This flow is combined with a multi-scale architecture (right). See Section 3 and Table 1.

Glow (2018)

- 1×1 convolutions

3.2 Invertible 1×1 convolution

(Dinh et al., 2014, 2016) proposed a flow containing the equivalent of a permutation that reverses the ordering of the channels. We propose to replace this fixed permutation with a (learned) invertible 1×1 convolution, where the weight matrix is initialized as a random rotation matrix. Note that a 1×1 convolution with equal number of input and output channels is a generalization of a permutation operation.
The log-determinant of an invertible 1×1 convolution of a $h \times w \times c$ tensor h with $c \times c$ weight matrix W is straightforward to compute:

$$
\begin{equation*}
\log \left|\operatorname{det}\left(\frac{d \operatorname{conv2D}(\mathbf{h} ; \mathbf{W})}{d \mathbf{h}}\right)\right|=h \cdot w \cdot \log |\operatorname{det}(\mathbf{W})| \tag{9}
\end{equation*}
$$

The cost of computing or differentiating $\operatorname{det}(\mathbf{W})$ is $\mathcal{O}\left(c^{3}\right)$, which is often comparable to the cost computing conv $2 \mathrm{D}(\mathbf{h} ; \mathbf{W})$ which is $\mathcal{O}\left(h \cdot w \cdot c^{2}\right)$. We initialize the weights W as a random rotation matrix, having a log-determinant of 0 ; after one SGD step these values start to diverge from 0 .

LU Decomposition. This cost of computing $\operatorname{det}(\mathbf{W})$ can be reduced from $\mathcal{O}\left(c^{3}\right)$ to $\mathcal{O}(c)$ by parameterizing W directly in its LU decomposition:

$$
\begin{equation*}
\mathrm{W}=\mathrm{PL}(\mathbf{U}+\operatorname{diag}(\mathrm{s})) \tag{10}
\end{equation*}
$$

where P is a permutation matrix, L is a lower triangular matrix with ones on the diagonal, U is an upper triangular matrix with zeros on the diagonal, and s is a vector. The log-determinant is then simply:

$$
\begin{equation*}
\log |\operatorname{det}(\mathbf{W})|=\operatorname{sum}(\log |\mathbf{s}|) \tag{11}
\end{equation*}
$$

Glow (2018)

- samples (learning - 40 GPU for a week)

Table 2: Best results in bits per dimension of our model compared to RealNVP.

Model	CIFAR-10	ImageNet 32x32	ImageNet 64x64	LSUN (bedroom)	LSUN (tower)	LSUN (church outdoor)
RealNVP	3.49	4.28	3.98	2.72	2.81	3.08
Glow	3.35	4.09	$\mathbf{3 . 8 1}$	$\mathbf{2 . 3 8}$	$\mathbf{2 . 4 6}$	$\mathbf{2 . 6 7}$

Figure 4: Random samples from the model, with temperature 0.7

Masked Autoregressive Flows (2017)

- P. Papamakarios, Theo Pavlakou, Iain Murray: Masked Autoregressive Flow for Density Estimation https://arxiv.org/abs/1705.07057

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
| 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
| 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
| 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
| 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
| 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
| 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |

(a) Generated images
(b) Real images

Masked Autoregressive Flows (2017)

- conditional CIFAR

(a) Generated images

(b) Real images

Other flows

- residual and planar flows (no closed form inversion)
- residual flows (iResNet)
- continuous flows - ODE, SDE (FFJORD, Diffusion flows)

Review article

- I. Kobyzev, S. J. D. Prince, M. A. Brubaker:

Normalizing Flows: An Introduction and Review of Current Methods (2020) https://ieeexplore.ieee.org/document/9089305

