Normalizing Flows

David Coufal
Institute of Computer Science
The Czech Academy of Sciences

david.coufal@cs.cas.cz

Vision for Robotics - FEL CTU
December 5, 2022

Introduction

e data D = {x; € R¥}"_, comes from distribution Pp
I.e., we assume that there exists a random variable D
with values in (R%, B(R%)) such that D ~ Pp

e How to specify Pp on the basis of D7

Introduction

e specification of cdf is possible, but the most common
approach is to specify a density pp : RI [0,00) of Pp

Pp(A) = /A pp(x)de for A € B(RY)

e How to get the density from empirical data?

Introduction

if pp € {py,0 € ©} (a parametric set of densities)
task reduces to estimate best parameter 6*
from data D = {x; € R4}"_; and set pp = pys

Mmaximum likelihood estimation

Omile argmaxg Eg p, 109 pg(x)

1 mn
argmaxg - > logpy(x;)
i=1

%k
mile

Introduction

e Maximum likelihood estimation

Omie = argmaxg K, p, 109 ps(x)

sk
mile

1 mn
argmaxy - > logpy(x;)
i=1

e Optimization in terms of KL-divergence

Omie = argming Dk (Pp(x)||Py(x))

= argming /pD(a:)Z;g((;B)) dx

MLE in terms of KL-divergence

e best approximation of Pp using Fy
- Pp proxy for Pp, Pp(dz) =+ Y1, d;(dz) (Dirac m.)
- Py - model distribution with density py

e maximization MLE = minimization of Dy (Ppl|FPy)
dP pp(x

Dk (Ppl|Py) = /lOQ—DdPD = /log D(®)
dPy po(x)

= [logpp(@)dPp ~ [109 py(a) dPp
~H[Pp] — [logpy(z) dPp (Pp = Pp)

X —/|ng9(a}) dPp (integration over Dirac)

dPp

Q

Enj log pg(x;)

1
=1

-~

=MLE

Information projection

o let P € P is fixed, and Q C P (subset of prob. distributions)

Q" = argmingeg Dk (P|Q),

Q* is the closest distribution from subset of O to P

Specification of O C P

e Via parametrized densities

l.e., Q = {py,0 € ©}, optimal parameter 6*
identified using MLE, which is a specific solution
to the information projection problem based on densities

° pz is used to approximate the real denstity of Pp, i.e,

pgx =~ pp = Ppdx

e How to sample from a given density/distribution?

Specification of O C P

via parametrized transformations

X has some simple distribution which is easy to sample from
and is transformed to a complex one using a deterministic
function G

e.g., let X ~ N(0,1) then X2 ~ x2(1) and G(z) = 22

Q is given by set of parametrized functions Gy, 6 € ©
(neural networks parametrized via their weights)

easy sampling from Gg(X), sample x ~ X (easy)
and then pass x through Gy(X), i.e., compute Gy(x)

How to solve the information projection problem
that is based on transformations?

GANSs

e solution to the information projection problem
JS-divergence minimalization
via playing an adversial game between
generator and discriminator

v

source: https://towardsdatascience.com/generative-adversarial-networks-learning-to-create-8b15709587c9

GANS

GANSs are learn adverisialy to minimize

Dysp(Ppl|Pa,)

by adjusting parameters 0 of generator

setting properly adverisial learning is still more of an art
than a strictly procedural matter

there is no straithforward inverse procedure
to find a latent z* to the given x* and directly evaluate

PG, (") = pg,(Go(2z"))

or even better, to find a latent z,,,; to a given x, .y
- invertibility of the generator

Conditional BEGAN

\ 1)

R
o=
& ’ i X
- e
| ¢
iy, . 3
~ == 3
v -
3 i
. ! L
—
- 3 . 1
L [
Y

a

o P
[% -q;

e cach image has its latent z = (2100, ¢c2)
2100 € Rloo,zi ~N(0,1) and ¢y € {—1, 1}2

e c encodes man/woman, w/o glasses, image = Gy(z)

Conditional BEGAN

e linear approximation between two latents, zq, z»
(condition fixed)

zt=2z1+t/13%x (20— 21), t=0,...,13

e SmMooth transition

Conditional BEGAN

e different conditions for the same latent z1gg

e properties manipulation
FDA approval rate, https://insilico.com

https://theconversation.com/90-of-drugs-fail-clinical-trials-heres-one-way-researchers-can-select-better-drug-candidates-174152
https://insilico.com/blog/fih

Normalizing flows

normalizing flows can be treated as invertible neural networks

based on invertible differentiable bijections, which assures
1-to-1 correspondence, i.e., z <> a, and so invertibility

exact evaluation of generative density
pG,(x) = pG,(Gy(2))

which allows learning via maximum likelihood estimation

a couple of tricks to make computation, learning and inver-
sion procedure effective

still, computationally more demanding than GANS
less quality results

Diffeomorphism on R¢

e a function g : R? — R? is called diffeomorphism if it is bijec-
tive, differentiable and has a differentiable inversion ¢g—1

source: https://arxiv.org/abs/1310.1710

e differentiable space deformation

https://arxiv.org/abs/1310.1710

Change of variable formula on R¢

e distribution transformation under diffeomorphism

e let P, be a distribution on R? with density p,(z),
g diffeomorphism on R% and = = ¢(2), i.e., z = ¢ 1 (x);
then x has distribution Px with density

px(@) = pz(g (@) - |det(J, 1())]

e Where Jg_l is the Jacobian of g1 (it is a d x d functional

matrix) at point x € R?, det(:) stands for determinant and
| - | is the absolute value

Density transformation on R¢

e g:R? 5 R? diffeomorphism with inversion f = g~1

o let € = g(2), z ~py(2), then x ~ px(x) and

px(x) = pz(f(x))-|det(Js(x))]

e J is the Jacobian of f, i.e., if f = (f1(x),..., fs(x)), then

Gii(@) - Gl(x)
Je(x) = : :
f

Sii(x) - Gli(a)

Terminology

e g direction: generative or forward direction, from easy to
a complex distribution

o = g_l direction: flow or backward direction, from complex
to an easy distribution - normalization of the complex distri-
bution, it holds literally when Z has a normal distribution

X=g(Z)
—
Generative

direction
%
,
Z = f(X)
-
Normalizing
direction

Pz

Base distribution, Z Target distribution, X

source: https://arxiv.org/abs/1908.09257

Composite flow

o let g1,9o2,...,9K be a set of diffeomorphisms, then
9(z) = gr(gr—-1(...(91(2)))) = g ogx—10---°9g1
is also a diffeorphism

e denoting fr =gy, k=1,...,K and f = g1

then inverse of g writes as

g =f@) = f1(fal... (fx(®)))) = f10 fao--0 f

e a2 composite flow is composed from simple flows

Jacobian of a composite flow

e composite flow

g1 g2 9K
— — —
= xXr Lo <> <—> LTir_ xXr = I
1 2 K—1 K
f1 f2 IK

o if f=f10fro0---0 fg, then

K

det(Jf(w)) — JflonO---OfK(w) — H det(Jfk(wk))
k=1

e the transformation formula has telescopic form

K
px(x) = pz(fio---ofg(x)) - [[det(Jy ()]
k=1

Factorization of transformed density

e |logarithm of transformed density

K
log(px(x)) = log(pz(fi10-- o fr(x)))+ > log(|det(Js, (zx)))
k=1

e simple flows f,. are parametrized

z = frp(x, 0f)

e MLE optimization, D = {z'}_,, w.r.t. 6 = (04,...,60})

N K

6" =max 3 [10g(pz(f10--- fx(x'0))) + 3 log(|det(Jy, (x}; 0)))])
=1 k=1

Elementwise flow

based on univariate differentiable bijections h; : R — R
9(z) = (h1(21), h2(22),- .-, hg(2q))

f(x) = (hyH(z1), by (22), ..., hy M (xg))

Jacobian is diagonal matrix with entries

Je(x) = diag(f(z)) = diag((h] (1), hy *(z2), ..., h 1 (24)))

determinant of Jf is product of its diagonal elements

d —1
det(Jp(@)) = [] dh

=1 dz;

()

L inear flow

let g(z) = Az + b where A is an invertible matrix
for inversion one has f(z) = A~ 1(x — b)
Jacobian is constant and equals to A1 and therefore

det(J(x)) = det(A~1) = det(A) 1

low expresibility, only linear transformations,
a normal distribution transforms to a normal distribution

generally, costly computation of Jy, it is O(d3)

Coupling flow

o x € R?, split of x = (xP, xP), x4 e R?, B ¢ RP—d
let hy : RP—d 5 RP—d g ¢ RP—4 pe a parametrized bijection
and © arbitrary function, ® ; R — RP—d

e coupling flow then reads as f(x) = (24, zP), where

24 4

2P = hy(x®) = h(2®;0 = o(z?))

and hg is called a coupling function

e inverse g(z) = (x4, xP) then reads as

A ZA

hg ' (zP) = h71(ZP 0 = @)

xr

:BB

Coupling flow - Jacobian

e standard coupling flow

A iBA

ho(xB) = h(z?P; ©(z?))

z
ZB

e coupling functions hy : RP—d — RP—d
are applied to xg elementwise

h(-,0) = (h1(27,01), hao(z5,02), ..., hp_q(zP_404))

where each h;(-,0;) is a scalar differentiable bijection

Coupling flow - Jacobian

e then the Jacobian is a lower triangular matrix

(I, O
Jr = 0zB 928
| oxA oxB
| I, 0
= | ah(zB, o) on(zB, o(z4))
i OxA ox P
) L 5
— B @(wA)) . B
Oh(z o diag(oh;(-,0;)/0x;)

e determinant is then product of the diagonal elements of Jf

Coupling flow

e 3 concrete example

zl:d wl:d

zd—l—l:D — in_I_l:D@eXD(SQ(CE‘l:d))+t9(2131:d)

where sy : R® — RP~4 ¢, : R4 — RP—d gre neural networks

e (© is the elementwise product, i.e,

rOY=(z1Y1, --. ,TqYd)

e inverse reads as

ZBl:al

wd—|—1:D — (Zd—l-liD . tg(zl:d)) o eXD(—SQ(ZLd))

Zl:d

Coupling flow - expressibility

going from layer to layer in a composite flow variables must
be somehow permuted to allow for complex relation mod-
elling

standard approach is to apply random permutations when
creating the flow and split dimensions in half

more complex schema are possible, e.qg., alternating pixels or
blocks of channels, which is called masking

computational complexity of Jacobian is O(D)

Coupling flow - multiscale architecture

e Noise vector is introduced along length of the flow which
decreases complexity of computations

L |

'

0J0,

Zaux {

-

&
<
()
),

(P

source: https://arxiv.org/abs/1908.09257

Autoregressive flow

e autoregressive model of p-th order AR(p) has form

p
Xy = Y @ Xy i+e, e¢~N(,1)
i=1
p
Xt = h(er, Y ot Xy—i)
i=1
Xt = hi(et, O1(Xi—1:0—p))

e in autoregressive flows the above schema is generalized

e hy IS a differentiable bijection a ©; is an arbitrary function
typically represented by a neural network

Autoregressive flow

o let hy is parametrized differentiable bijection
construct g : R — RP

(z1,...zp) == = g(2)
in autoregressive manner, i.e.,

r; = h(z;; ©(x1:5-1)), t=1,...,D

with ©1 = 61 being a constant and ©;
arbitrary functions defined on respective domains

e inverse (z1,...zp) = f(x), then reads as

zi = h (s, ©i(x14-1)), i=1,...,D, O =

no autoregressive structure

Autoregressive flow

Jacobian of f is a lower triangular matrix

with determinant

D — :
k=1 1

example

r; = z; - exp(sg(®1:5-1)) + to(x1:—1) and z; ~N(0,1)

tight connection to coupling flows

Masked autoregressive flow

e masking (MAF) allows for one-pass computation
of f(x) (fast evaluation of likelihood)

2z = h 1(x;;©;(x1-,_1)) (parallel via masking)

e however sampling (generative direction),
i.e., computing g(z), is inherently sequential (slow)

r; = h(z; ©i(®1:,-1)) (sequential)

Autoregresive flow

e masked autoregresive flows (MAF)
- fast likelihood, slow sampling

Z° I3 =9
=3 L3 =3

e inverse autoregresive flows (IAF)
- fast sampling, slow likelihood

Conditional autoregresive flow

e natural extension to conditional version,
by augmenting input with class information

e for a training point {x,c}, we incorporate ¢
into the 6 parameter to get conditional density

px(zlc) = pz(f(z|c)) - |det(Jy(z|c))

g — h_l(aji; @i(mlii—la C))7 1= 17 sy D

e conditional sampling

z;lc = h(z;; ©;(x1:5-1,¢)), t=1,...,D

NICE (2014)

e L. Dinh, D. Krueger, Y. Bengio:
NICE: Non-linear Independent Component Estimation

https://arxiv.org/abs/1410.8516

(1 _ .

hIl = .1_{1
1))

hy, =1, +m'Y(z1,)
(2) _ p(1)

h'fg = h-f2
(2) _ 3(1) (2)

hy =hy ' +m'(z,)
(3) _ (2

hy" = hy
(3) (2) (3)

hy,” = hy, +m'(xr,)
(4) _ p(3)

h'fg = h-f2
(4) _ 3(3) (4)

hy " =hy" +m' (zg,)

h = exp(s) ® hY
The coupling functions m*), m(? m(® and m® used for the coupling layers are all deep rectified

networks with linear output units. We use the same network architecture for each coupling function:
five hidden layers of 1000 units for MNIST, four of 5000 for TFD, and four of 2000 for SVHN and

CIFAR-10.

NICE (2014)

e four standard ML datasets

MNIST - Handwritten digit dataset - 28x28 (grayscale)
TFD - Toronto Faces Dataset - 32x32 (grayscale)
SVHN - The Street View House Numbers - 32x32 RGB
CIFAR-10 - 32x32 RGB images in 10 classes

e Nnumerical results

Dataset MNIST TFD SVHN CIFAR-10
dimensions 784 2304 3072 3072
Preprocessing None Approx. whitening ZCA ZCA
hidden layers 5 4 4 4
hidden units 1000 5000 2000 2000
Prior logistic gaussian logistic logistic
Log-likelihood | 1980.50 5514.71 11496.55 | 5371.78

Figure 3: Architecture and results. # hidden units refer to the number of units per hidden layer.

NICE (2014)

sampling

wle~e=|n |y

¢
q
2
2
0
5
7
2

1| SR AT &
1] AENA W
SRR | Ot I

(c) Model trained on SVHN (d) Model trained on CIFAR-10

Figure 5: Unbiased samples from a trained NICE model. We sample h ~ py (k) and we output
r= f71(h).

Real NVP (ICLR 2017)

e L. Dinh, J. Sohl-Dickstein, S. Bengio:
Density Estimation Using Real NV P
https://arxiv.org/abs/1605.08803

but which depends on the remainder of the input vector in a complex way. We refer to each of these
simple bijections as an affine coupling layer. Given a) dimensional input = and d < D, the output
y of an affine coupling layer follows the equations

Y1:d = T1:d (4)
Ydt1:D = Tat1:0 @ exp (s(z1.4)) + t(z1.4), (5)
where 5 and 7 stand for scale and translation, and are functions from R? s RP—4 and ¢ is the
Hadamard product or element-wise product (see Figure 2(a)).
3.3 Properties

The Jacobian of this transformation is

dy L4 ’
92T — | 2o diag (expls (z1.4)]) | ?
1:d

Real NVP (ICLR 2017)

e Mmasked convolutions

Figure 3: Masking schemes for affine coupling layers. On the left, a spatial checkerboard pattern
mask. On the right, a channel-wise masking. The squeezing operation reduces the 4 x 4 x 1 tensor
(on the left) into a 2 x 2 x 4 tensor (on the right). Before the squeezing operation, a checkerboard
pattern is used for coupling layers while a channel-wise masking pattern is used afterward.

(see Figure 2(b)),
{yl:d = T1.d (7)
Yd+1:D = Tds1:0 @ exp (8(z1:d)) + t(21:d)
T1:d = Y1:d
& (8)
{-Td+1:D - {'Q'd+1:D - t(yl:d)) @ 'E‘XP(- S{yl:d)).\

meaning that sampling is as efficient as inference for this model. Note again that computing the
inverse of the coupling layer does not require computing the inverse of s or £, so these functions can
be arbitrarily complex and difficult to invert.

3.4 Masked convolution

Partitioning can be implemented using a binary mask b, and using the functional form for y,

y=bozx+(1-b)e (:r; © exp (.s-(b 0} a:)) +tbo :r;)) (9)

Real NVP (ICLR 2017)

e results on CelebA

8: Samples from a model trained on CelebA.

Figure

Glow (2018)

o D. P. Kingma, P. Dhariwal :
Glow: Generative Flow with Invertible 1x1 Convolutions
https://arxiv.org/abs/1807.03039

'S step of flow = K
)
affine coupling layer squ:eze
t |
invertible 1x1 conw split |
f f
actnorm | step of flow * K ® (L—1)
y t
squeeze
(15
(a) One step of our flow. (b) Multi-scale architecture (Dinh et al., 2016).

Figure 2: We propose a generative flow where each step (left) consists of an actnorm step, followed
by an invertible 1 x 1 convolution, followed by an affine transformation (Dinh et al., 2014). This
flow is combined with a multi-scale architecture (right). See Section 3 and Table 1.

Glow (2018)

e 1 x 1 convolutions

3.2 Invertible 1 x 1 convolution

(Dinh et al., 2014, 2016) proposed a flow containing the equivalent of a permutation that reverses the

ordering of the channels. We propose to replace this fixed permutation with a (learned) invertible
1 x 1 convolution, where the weight matrix is initialized as a random rotation matrix. Note that a
1 % 1 convolution with equal number of input and output channels is a generalization of a permutation
operation.

The log-determinant of an invertible 1 x 1 convolution of a h x w x ¢ tensor h with ¢ x ¢ weight
matrix W is straightforward to compute:

det (a’. conv2D(h; W)
dh

log) ‘ =h-w-log|det(W)] 9

The cost of computing or differentiating det(W) is O(¢*), which is often comparable to the cost
computing conv2D(h; W) which is O(h - w - ¢?). We initialize the weights W as a random rotation
matrix, having a log-determinant of O; after one SGD step these values start to diverge from 0.

LU Decomposition. This cost of computing det(W) can be reduced from O(c*) to O(e) by
parameterizing W directly in its LU decomposition:

W = PL(U + diag(s)) (10)

where P is a permutation matrix, L is a lower triangular matrix with ones on the diagonal, U is an
upper triangular matrix with zeros on the diagonal, and s is a vector. The log-determinant is then
simply:

log | det(W)| = sum(log |s|) (1D

Glow (2018)

e samples (learning - 40 GPU for a week)

Table 2: Best results in bits per dimension of our model compared to RealNVP.

Model | CIFAR-10 | ImageNet 32x32 | ImageNet 64x64 | LSUN (bedroom) | LSUN (tower) | LSUN (church outdoor)

RealNVP | 3.49 | 4.28 | 3.08 | 272 | 281 | 3.08

Glow | 335 | 4.00 | 3.81 | 2.38 | 2.46 | 2.67

7

i

Figure 4: Random samples from the model, with temperature 0.7

Masked Autoregressive Flows (2017)

e P. Papamakarios, Theo Pavlakou, Iain Murray:
Masked Autoregressive Flow for Density Estimation
https://arxiv.org/abs/1705.07057

Masked Autoregressive Flows (2017)

e conditional CIFAR

ﬂH-Mm EIEEEEE—.
w‘!ﬂhl o et A B

(a) Generated images (b) Real images

Other flows

e residual and planar flows (no closed form inversion)
e residual flows (iResNet)

e continuous flows - ODE, SDE (FFJORD, Diffusion flows)

Review article

e I. Kobyzev, S. J. D. Prince, M. A. Brubaker:
Normalizing Flows: An Introduction and Review
of Current Methods (2020)
https://ieeexplore.ieee.org/document /9089305

9‘3] E]{-\]n{\'“t‘“"]ﬁﬂ]-\J'].:I{-\"‘?'t]”nH }——) Problem: no mixing of variables

Mon-linear elementwise transform

§3.I.2 Linear flows }—) Problem: limited representational power

Affine combination of variables

§3.3 Planar and radial flows > Problem: hard to compute inverse

Mon-linear transforms

§3.4.1 Coupling flows §3.4.4 Coupling functions
§3.4.2 Antoregressive flows Depend on Affine

. ; coupling
Architectures that allow invertible plng

NlJIl-“[li:Hl' h(]lliL['(Hl
Ceontinuous mixture CDFs
Splines

Neural autoregressive
Sum-of-squares polynomial
Piccewise-bijective

. functions
non-linear transformations,

43.5 Residual fows

Invertible residual networks

£3.6 Infinitesimal Aows

Continuous flows depending on ODEs or SDEs

