
Normalizing Flows

David Coufal

Institute of Computer Science

The Czech Academy of Sciences

david.coufal@cs.cas.cz

Vision for Robotics - FEL CTU

December 5, 2022

Introduction

• data D = {xi ∈ Rd}ni=1 comes from distribution PD
i.e., we assume that there exists a random variable D

with values in (Rd,B(Rd)) such that D ∼ PD

• How to specify PD on the basis of D?

Introduction

• specification of cdf is possible, but the most common

approach is to specify a density pD : Rd → [0,∞) of PD

PD(A) =
∫
A
pD(x) dx for A ∈ B(Rd)

• How to get the density from empirical data?

Introduction

• if pD ∈ {pθ, θ ∈ Θ} (a parametric set of densities)

task reduces to estimate best parameter θ∗

from data D = {xi ∈ Rd}ni=1 and set pD = pθ∗

• maximum likelihood estimation

θmle = argmaxθ Ex∼PD log pθ(x)

θ∗mle = argmaxθ
1

n

n∑
i=1

log pθ(xi)

Introduction

• maximum likelihood estimation

θmle = argmaxθ Ex∼PD log pθ(x)

θ∗mle = argmaxθ
1

n

n∑
i=1

log pθ(xi)

• optimization in terms of KL-divergence

θmle = argminθ DKL(PD(x)||Pθ(x))

= argminθ

∫
pD(x)

pD(x)

pθ(x)
dx

MLE in terms of KL-divergence

• best approximation of PD using Pθ

- P̂D proxy for PD, P̂D(dx) = 1
n

∑n
i=1 δxi(dx) (Dirac m.)

- Pθ - model distribution with density pθ

• maximization MLE = minimization of DKL(PD||Pθ)

DKL(PD||Pθ) =
∫

log
dPD
dPθ

dPD =
∫

log
pD(x)

pθ(x)
dPD

=
∫

log pD(x) dPD −
∫

log pθ(x) dPD

≈ −H[PD]−
∫

log pθ(x) dP̂D (PD ≈ P̂D)

∝ −
∫

log pθ(x) dP̂D (integration over Dirac)

∝ −
1

n

n∑
i=1

log pθ(xi)︸ ︷︷ ︸
=MLE

Information projection

• let P ∈ P is fixed, and Q ⊂ P (subset of prob. distributions)

Q∗ = argminQ∈Q DKL(P ||Q),

Q∗ is the closest distribution from subset of Q to P

Specification of Q ⊂ P

• via parametrized densities

i.e., Q = {pθ, θ ∈ Θ}, optimal parameter θ∗

identified using MLE, which is a specific solution

to the information projection problem based on densities

• p∗θ is used to approximate the real denstity of PD, i.e,

pθ∗ ≈ pD = PD dx

• How to sample from a given density/distribution?

Specification of Q ⊂ P

• via parametrized transformations

X has some simple distribution which is easy to sample from

and is transformed to a complex one using a deterministic

function G

e.g., let X ∼ N(0,1) then X2 ∼ χ2(1) and G(z) = z2

• Q is given by set of parametrized functions Gθ, θ ∈ Θ

(neural networks parametrized via their weights)

• easy sampling from Gθ(X), sample x ∼ X (easy)

and then pass x through Gθ(X), i.e., compute Gθ(x)

• How to solve the information projection problem

that is based on transformations?

GANs

• solution to the information projection problem

JS-divergence minimalization

via playing an adversial game between

generator and discriminator

source: https://towardsdatascience.com/generative-adversarial-networks-learning-to-create-8b15709587c9

GANs

• GANs are learn adverisialy to minimize

DJSD(PD||PGθ)

by adjusting parameters θ of generator

• setting properly adverisial learning is still more of an art

than a strictly procedural matter

• there is no straithforward inverse procedure

to find a latent z∗ to the given x∗ and directly evaluate

pGθ(x
∗) = pGθ(Gθ(z

∗))

• or even better, to find a latent zreal to a given xreal
- invertibility of the generator

Conditional BEGAN

• each image has its latent z = (z100, c2)
z100 ∈ R100, zi ∼ N (0,1) and c2 ∈ {−1,1}2

• c encodes man/woman, w/o glasses, image = Gθ(z)

Conditional BEGAN

• linear approximation between two latents, z1, z2

(condition fixed)

zt = z1 + t/13 ∗ (z2 − z1), t = 0, . . . ,13

• smooth transition

Conditional BEGAN

• different conditions for the same latent z100

• properties manipulation

FDA approval rate, https://insilico.com

https://theconversation.com/90-of-drugs-fail-clinical-trials-heres-one-way-researchers-can-select-better-drug-candidates-174152
https://insilico.com/blog/fih

Normalizing flows

• normalizing flows can be treated as invertible neural networks

• based on invertible differentiable bijections, which assures

1-to-1 correspondence, i.e., z ↔ x, and so invertibility

• exact evaluation of generative density

pGθ(x) = pGθ(Gθ(z))

which allows learning via maximum likelihood estimation

• a couple of tricks to make computation, learning and inver-

sion procedure effective

• still, computationally more demanding than GANs

less quality results

Diffeomorphism on Rd

• a function g : Rd → Rd is called diffeomorphism if it is bijec-

tive, differentiable and has a differentiable inversion g−1

source: https://arxiv.org/abs/1310.1710

• differentiable space deformation

https://arxiv.org/abs/1310.1710

Change of variable formula on Rd

• distribution transformation under diffeomorphism

• let PZ be a distribution on Rd with density pZ(z),

g diffeomorphism on Rd and x = g(z), i.e., z = g−1(x);

then x has distribution PX with density

pX(x) = pZ(g−1(x)) · |det(Jg−1(x))|

• where Jg−1 is the Jacobian of g−1 (it is a d × d functional

matrix) at point x ∈ Rd, det(·) stands for determinant and

| · | is the absolute value

Density transformation on Rd

• g : Rd → Rd diffeomorphism with inversion f = g−1

• let x = g(z), z ∼ pZ(z), then x ∼ pX(x) and

pX(x) = pZ(f(x)) · |det(Jf(x))|

• Jf is the Jacobian of f , i.e., if f = (f1(x), . . . , fd(x)), then

Jf(x) =

∂f1
∂x1

(x) · · · ∂fd
∂xd

(x)
...

∂fd
∂x1

(x) · · · ∂fd
∂xd

(x)

Terminology

• g direction: generative or forward direction, from easy to

a complex distribution

• f = g−1 direction: flow or backward direction, from complex

to an easy distribution - normalization of the complex distri-

bution, it holds literally when Z has a normal distribution

source: https://arxiv.org/abs/1908.09257

Composite flow

• let g1, g2, . . . , gK be a set of diffeomorphisms, then

g(z) = gK(gK−1(. . . (g1(z)))) = gK ◦ gK−1 ◦ · · · ◦ g1

is also a diffeorphism

• denoting fk = g−1
k , k = 1, . . . ,K and f = g−1

then inverse of g writes as

g−1 = f(x) = f1(f2(. . . (fK(x)))) = f1 ◦ f2 ◦ · · · ◦ fK

• a composite flow is composed from simple flows

Jacobian of a composite flow

• composite flow

z

g1
−→
←−
f1

x1

g2
−→
←−
f2

x2 ←→ · · · ←→ xK−1

gK
−→
←−
fK

xK = x

• if f = f1 ◦ f2 ◦ · · · ◦ fK, then

det(Jf(x)) = Jf1◦f2◦···◦fK(x) =
K∏
k=1

det(Jfk(xk))

• the transformation formula has telescopic form

pX(x) = pZ(f1 ◦ · · · ◦ fK(x)) ·
K∏
k=1

|det(Jfk(xk))|

Factorization of transformed density

• logarithm of transformed density

log(pX(x)) = log(pZ(f1 ◦ · · · ◦ fK(x))) +
K∑
k=1

log(|det(Jfk(xk))|)

• simple flows fk are parametrized

z = fk(x; θk)

• MLE optimization, D = {xi}Ni=1, w.r.t. θ = (θ1, . . . , θk)

θ∗ = max
θ

N∑
i=1

log(pZ(f1 ◦ . . . fK(xi; θ))) +
K∑
k=1

log(|det(Jfk(x
i
k; θk))|)

Elementwise flow

• based on univariate differentiable bijections hi : R→ R

• g(z) = (h1(z1), h2(z2), . . . , hd(zd))

• f(x) = (h−1
1 (x1), h−1

2 (x2), . . . , h−1
d (xd))

• Jacobian is diagonal matrix with entries

Jf(x) = diag(f(x)) = diag((h−1
1 (x1), h−1

2 (x2), . . . , h−1
d (xd)))

• determinant of Jf is product of its diagonal elements

det(Jf(x)) =
d∏

i=1

dh−1

dxi
(xi)

Linear flow

• let g(z) = Az + b where A is an invertible matrix

• for inversion one has f(x) = A−1(x− b)

• Jacobian is constant and equals to A−1 and therefore

det(Jf(x)) = det(A−1) = det(A)−1

• low expresibility, only linear transformations,

a normal distribution transforms to a normal distribution

• generally, costly computation of Jf , it is O(d3)

Coupling flow

• x ∈ Rd, split of x = (xD,xB), xA ∈ Rd, xB ∈ RD−d

let hθ : RD−d → RD−d, θ ∈ RD−d be a parametrized bijection

and Θ arbitrary function, Θ : Rd → RD−d

• coupling flow then reads as f(x) = (zA, zB), where

zA = xA

zB = hθ(x
B) = h(xB; θ = Θ(xA))

and hθ is called a coupling function

• inverse g(z) = (xA,xB) then reads as

xA = zA

xB = h−1
θ (zB) = h−1(zB; θ = Θ(zA))

Coupling flow - Jacobian

• standard coupling flow

zA = xA

zB = hθ(x
B) = h(xB; Θ(xA))

• coupling functions hθ : RD−d → RD−d

are applied to xB elementwise

h(·, θ) = (h1(xB1 , θ1), h2(xB2 , θ2), . . . , hD−d(x
B
D−d, θd))

where each hi(·, θi) is a scalar differentiable bijection

Coupling flow - Jacobian

• then the Jacobian is a lower triangular matrix

Jf =

 Id 0
∂zB

∂xA
∂zB

∂xB

=

 Id 0
∂h(xB,Θ(xA))

∂xA
∂h(xB,Θ(xA))

∂xB

=

 Id 0
∂h(xB,Θ(xA))

∂xA
diag(∂hi(·, θi)/∂xBi)

• determinant is then product of the diagonal elements of Jf

Coupling flow

• a concrete example

z1:d = x1:d

zd+1:D = xd+1:D � exp(sθ(x
1:d)) + tθ(x

1:d)

where sθ : Rd → RD−d, tθ : Rd → RD−d are neural networks

• � is the elementwise product, i.e,

x� y = (x1y1, . . . , xdyd)

• inverse reads as

x1:d = z1:d

xd+1:D = (zd+1:D − tθ(z1:d))� exp(−sθ(z1:d))

Coupling flow - expressibility

• going from layer to layer in a composite flow variables must

be somehow permuted to allow for complex relation mod-

elling

• standard approach is to apply random permutations when

creating the flow and split dimensions in half

• more complex schema are possible, e.g., alternating pixels or

blocks of channels, which is called masking

• computational complexity of Jacobian is O(D)

Coupling flow - multiscale architecture

• noise vector is introduced along length of the flow which

decreases complexity of computations

source: https://arxiv.org/abs/1908.09257

Autoregressive flow

• autoregressive model of p-th order AR(p) has form

Xt =
p∑

i=1

ϕtXt−i + εt, εt ∼ N (0,1)

Xt = ht(εt,
p∑

i=1

ϕtXt−i)

Xt = ht(εt,Θt(Xt−1:t−p))

• in autoregressive flows the above schema is generalized

• ht is a differentiable bijection a Θt is an arbitrary function

typically represented by a neural network

Autoregressive flow

• let hθ is parametrized differentiable bijection

construct g : RD → RD,

(x1, . . . xD) = x = g(z)

in autoregressive manner, i.e.,

xi = h(zi; Θi(x1:i−1)), i = 1, . . . , D

with Θ1 = θ1 being a constant and Θi

arbitrary functions defined on respective domains

• inverse (z1, . . . zD) = f(x), then reads as

zi = h−1(xi; Θi(x1:i−1)), i = 1, . . . , D, Θ1 = θ1

no autoregressive structure

Autoregressive flow

• Jacobian of f is a lower triangular matrix

• with determinant

det(Jf(x)) =
D∏
k=1

∂h−1(xi; Θi(x1:i−1))

∂xi

• example

xi = zi · exp(sθ(x1:i−1)) + tθ(x1:i−1) and zi ∼ N (0,1)

• tight connection to coupling flows

Masked autoregressive flow

• masking (MAF) allows for one-pass computation

of f(x) (fast evaluation of likelihood)

zi = h−1(xi; Θi(x1:i−1)) (parallel via masking)

• however sampling (generative direction),

i.e., computing g(z), is inherently sequential (slow)

xi = h(zi; Θi(x1:i−1)) (sequential)

Autoregresive flow

• masked autoregresive flows (MAF)

- fast likelihood, slow sampling

• inverse autoregresive flows (IAF)

- fast sampling, slow likelihood

Conditional autoregresive flow

• natural extension to conditional version,

by augmenting input with class information

• for a training point {x, c}, we incorporate c

into the θ parameter to get conditional density

pX(x|c) = pZ(f(x|c)) · |det(Jf(x|c))|

zi = h−1(xi; Θi(x1:i−1, c)), i = 1, . . . , D

• conditional sampling

xi|c = h(zi; Θi(x1:i−1, c)), i = 1, . . . , D

NICE (2014)

• L. Dinh, D. Krueger, Y. Bengio:

NICE: Non-linear Independent Component Estimation

https://arxiv.org/abs/1410.8516

NICE (2014)

• four standard ML datasets

MNIST - Handwritten digit dataset - 28x28 (grayscale)

TFD - Toronto Faces Dataset - 32x32 (grayscale)

SVHN - The Street View House Numbers - 32x32 RGB

CIFAR-10 - 32x32 RGB images in 10 classes

• numerical results

NICE (2014)

• sampling

Real NVP (ICLR 2017)

• L. Dinh, J. Sohl-Dickstein, S. Bengio:

Density Estimation Using Real NVP

https://arxiv.org/abs/1605.08803

Real NVP (ICLR 2017)

• masked convolutions

Real NVP (ICLR 2017)

• results on CelebA

Glow (2018)

• D. P. Kingma, P. Dhariwal :

Glow: Generative Flow with Invertible 1x1 Convolutions

https://arxiv.org/abs/1807.03039

Glow (2018)

• 1× 1 convolutions

Glow (2018)

• samples (learning - 40 GPU for a week)

Masked Autoregressive Flows (2017)

• P. Papamakarios, Theo Pavlakou, Iain Murray:

Masked Autoregressive Flow for Density Estimation

https://arxiv.org/abs/1705.07057

Masked Autoregressive Flows (2017)

• conditional CIFAR

Other flows

• residual and planar flows (no closed form inversion)

• residual flows (iResNet)

• continuous flows - ODE, SDE (FFJORD, Diffusion flows)

Review article

• I. Kobyzev, S. J. D. Prince, M. A. Brubaker:

Normalizing Flows: An Introduction and Review

of Current Methods (2020)

https://ieeexplore.ieee.org/document/9089305

