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Neural networks

a neural network is a complex composite function
built from individual layers of neurons
neurons represent simple computation units

neurons are parametrized, so the whole network
is a highly parametrized function

adjustment of parameters is called network learning
via back propagation of a loss function error
(internally computes a gradient of error w.r.t net parameters)

shallow networks - one hidden layer of neurons

deep networks - multiple layers
(up to 200 layers, milions of parameters)



Perceptron neural networks

e perceptron neuron h : RY —s R has form

h(x) = act(wx + b)

- act(z) = 1—|—i—ﬁz (sigmoid)
- act(z) = max(0, z) (ReLU)

e w.beRY- parameters

hidden hidden

output
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K classes - cq,..

Neural networks for classification

.,Cr, K neurons in the output layer

q=(o1(2),...,0kx(x))

normalization using softmax function

op(x) =

eLk

, o € (0,1), op(x) =1
Zé(:lewk k ( ) zk:k()

g € P(N) — probability distribution on N
qr = oy for k < K, qi. = 0, otherwise
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Convolutional neural networks

e convolution filters moving over the input
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source: https://towardsdatascience.com/mnist-handwritten-digits-classification-using-a-convolutional-neural-network-cnn-af5fafbc35e9

e down-sampling and up-sampling operations



Standard convolutions

e convolution filters moving over the input (7 x 1)

Convolution

1. Ada p number of zeros 2. The kernel jumps s pixels when
Iuput Kemel around the image being slided across the image Output‘.

source: https://towardsdatascience.com/what-is-transposed-convolutional-layer-40e5e6e31c11

e parameters - filter size (k x k), padding (=0), strides (=1)

ol uti mations


https://github.com/vdumoulin/conv_arithmetic

Convolutions as matrix operations

e »

Figure 2.1: (No padding, unit strides) Convolving a 3 x 3 kernel over a 4 x 4
input using unit strides (i.e., i =4, k=3, s = 1 and p = 0).

Take for example the convolution represented in If the input and
output were to be unrolled into vectors from left to right, top to bottom, the
convolution could be represented as a sparse matrix C where the non-zero ele-
ments are the elements w; ; of the kernel (with 7 and j being the row and column
of the kernel respectively):

wog Wp Wiz 0 wyn  uh, o Wz 0 Wag W) Wiz 0 1] 0 0 0
0 woo woey woez O wyp wyyg wyz 0 wag wey wes 0 0 0 0
0 0 0 0 wpg wpy woz O wip wyy wyz 0 wap wey waz 0
i) (1] 0 0 0 W Wy Wz ] UWng U uWh g 0 g MWy Wz

This linear operation takes the input matrix flattened as a 16-dimensional
vector and produces a 4-dimensional vector that is later reshaped as the 2 x 2
output matrix.

source: https://github.com/vdumoulin/conv_arithmetic



Transposed convolutions

e convolution filters moving over the input (ixz)

Transposed Convolution

N Galedlate
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p—k
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orT E]. 1. Caleulate parnmeters 2. Insert » zeros between 3 Add p' number of zeros 4 The kernel always jumps 1
Input K %, and p’ the rows and columns around the image pixel when being slided across the output
image

source: https://towardsdatascience.com/what-is-transposed-convolutional-layer-40e5e6e31c11

e parameters - filter size (kxk), padding (=0), strides (=1)

e transposed convolution animations



https://towardsdatascience.com/what-is-transposed-convolutional-layer-40e5e6e31c11

Convolutional neural networks - upsampling

e transposed convolutions - increase in spatial dimensions

1024
1

mm @h

Project and reshape

e Standard convolutions with manipulated inputs



Neural networks - learning

e |0ss function in supervised learning context
- regression D = {z; € R%,y; € R}V, NNg:R¢ = R

1
lossp(0) = NZ(NNH(Q%') —y;)?
i
- classification {z; € R% ¢; € N} |, NNy : R? — P(N)

lossp(0) = %ZH(pi = 5ci(N)>qi = NNg(x;))

— Y phlog(ql) — cross-entropy
kEN

H(p*, q")

e parameters update - sequential stochastic gradient descent

Onew = Ocur — 1 - Vylossp(@), where n > 0 — learning rate

practically - sophisticated optimizers (Adam, RMSProp ...)



Well recognized DL tasks

classification
ImageNet Large Scale Visual Recognition Challenge
AlexNet CNN network won the contest in 2012

reinforcement learning DeepMind (UK, Google 2014)
AlhaGo vs. Lee Sedol (4:1, 2016), AlphaGo Zero vs. AlphaGo
(100:0, 2017) AlphaZero vs. Stockfish (28:72:0, 2018),
Dota 2 tournaments, AlphaFold (2021)

recurrent neural networks / transformers (2017)
LSTM, GRU - neurons, NLP tasks, Google Translator, DeepL
GPT-2, GPT-3, CLIP, DALL-E ... (Open-AlI, 2018-2022)

generative programming
Ian Godfellow et al. (2014) - Generative Adversial Networks
https://arxiv.org/abs/1406.2661


https://arxiv.org/pdf/1712.01815.pdf

Elementary concepts

random variable X ~ Py, (2, A, Px)

- Q2 - space of elementary events X € Q2
- A - sigma algebra of measurable events
- Px - distribution of X

distribution of X

- set function on A, Py : A — [0, 1]

- obeys Kolmogorov's laws of probability
- typically Q € R? and A = B(R%)

data D = {x; € R¥}7_, comes from distribution Pp
I.e., we assume that there exists a random variable D

such that D ~ Pp (sometimes we use P4,t5 instead of Pp)

How to specify Pp on the basis of D7



Elementary concepts

if €2 is countable, Pp can be given by enumeration, i.e.,
Pp(w;) =p;, fori=1,...,n (finite) or i € N (countable)

if Q2 = Rd, specification of cdf is possible, but inconvenient
in higher dimensions, so the most common approach is
to specify a density pp : R? — [0,00) of Pp and one has

Pp(A) = /A pp(x)de for A € B(RY)

cannot handle distributions which do not have densities
complex formulas in high dimensions for dependent data

How to get the density from empirical data?



Elementary concepts

if pp € {py,0 € ©} (a parametric set of densities)
task reduces to estimate 6* from data D and pp = py~
maximum likelihnood estimation

in @ non-parametric context, kernel density estimation
IS the standard choice

@) = g 3 K (*5)

k=1

K :R% & R, a kernel (bump) function, h > 0 is the bandwidth
practically applicable for d up to 5

How to sample from a given distribution/density?



Distance of probability distributions

e space of probability distributions on R%, B(R?) :
P = {P : probability distribution on (R%, B(R%))}
it iIs metrizable

e standard metric/distance on P, d: P x P — [0, 00] such that
1. d(P,Q) >0
2. d(P,Q) = 0 iff P=Q
3. d(P,Q) = d(Q,P) (symmetry)
4. d(P,Q) > d(P,Q) + d(P,Q) triangle inquality

e divergence on P. P x P — [0,c0] such that
1. d(P,Q) >0
2. d(P,Q) = 0 iff P=Q



Examples of metrics/distances

e total variation
1
5(P,Q) = sup |P(4) - Q(A)] = = [ |p(@) - q(@)| da
AcA 2

e Hellinger distance

nr0) = (3 ] (Vi@ - fa@) ax)

e \/\Vasserstein distance

1/p
Wp(P,Q) = ( inf /d(w,y)p dy(x X y))

vel (P,Q)



Frechet distance

in GAN context, W5 is also called the Frechet distance - FD

FD for two multivariate normal distributions
let P = N(I“l’la Z]_), Q= N(I“l’27 Zl)r then

FD(PaQ) — WQ(H’lap’QazlazQ)

= ||y — poll3+ Tr(Z1 + 5o — 2(Z155)1?)

empirical estimate, given two sets of empirical data

N N
Dp ={x;};=1,Dg = {¥i}i=1
compute sample mean and covariance m1y, S1 from Dp
and similarly my, S, from Dg

finally we compute

FD = Wa(mq1,mp,851,52)



Kullback-Leibler divergence

e Kullback-Leibler divergence
let P,Q € P, Pk Q (if Q(de) =0, then P(dx) = 0)

Dk (PllQ) = [ —=dP

e properties:
Dk (P||Q) >0
DKL(P Q) =0 iff P=0Q, i.e., DKL(PHP) =0
Dy (P||Q) # Dk (Q||P)

e tight relation to theory of information (relative entropy),
theory of large deviations



Jensen-Shannon divergence

e Jensen-Shannon divergence - symmetrized KL divergence

1 1
D,sp(P||Q) = EDKL(PHM) + EDKL(QHM)

where M = 2(P 4 Q)

e properties:
DJSD(PHP) =0 iff
0 < D,sp(P|lQ) <1
Dysp(P||Q) = Dysp(QI|IP)

e square root of JSD, i.e. \/DJSD(PHQ) is @ metric on P



f-divergences

e for a convex function f: Ry — R, lower-semicontinuous

such that f(1) =0
dP
[1(a) %

= | f(%) p(@) d

e KL-divergence, f(u) = ulog(u)

D¢(Pl|Q)

e JSD-divergence

f(u) = —(u+1)log (1F*) + ulog(u)

e squared Hellinger distance, f(u) = (u — 1)?



Reverse information projection (M-projection)

e let P € P is fixed, and Q C P (subset of prob. distributions)

Q" = argmingeg Dy (P||Q),

Q* is the closest distribution from subset of O to P




Specification of O C P

via parametrized densities Q = {pg,0 € ©}

via parametrized transformations

X has some simple distribution which is easy to sample from
and is transformed to a complex one using a deterministic
function G

e.g., let X ~ N(0,1) then X2 ~ x2(1) and G(z) = 22

Q is given by set of parametrized functions Gy, 6 € ©
(neural networks parametrized via their weights)

easy sampling from Gy(X), sample x ~ X (easy)
and then pass x through Gy(X), i.e., compute Gy(x)

How to solve the information projection problem?



Maximum likelihood estimation

e task
given the set of data {x; ~ Pp}i*{, describe distribution Pp

e VMILE estimate Pp € Py = {Fy,0 € ©}
assume that Py has density, i.e., dPy = py(x) dx
assume that x; i.i.d.
search for optimal 0me € © and then set Pp = Fy_

Omie = argmaxg Eyp, l0gpy(x)

estimate 07,

1 n
argmaxg - > logpy(x;)
i=1

e Optimization in terms of KL-divergence

Omie = argming Dy (Pp(x)||Py(x))
= argming /pD(a:)pD<w) dx

po(x)




MLE in terms of KL-divergence

e best approximation of Pp using Fy
- Pp proxy for Pp, Pp(dz) =+ Y1, d;(dz) (Dirac m.)
- Py - model distribution with density pmodel(x|0)

e maximization MLE = minimization of KL(Ppl|Fp)
dP pp(x

Dk (Ppl[Py) = /lOQ—DdPD = /log D(@)
dFy po(x)

= [logpp(@)dPp ~ [ 109 py(a) dPp
~H[Pp] — [ logpy(z) dPp (Pp = Pp)

X —/|ng9(a}) dPp (integration over Dirac)

dPp

Q

Enj log pg(x;)

1
=1

-~

=MLE



Generative modeling

e purpose
given data from an uknown distribution x ~ p(x)
model p(x) using a differentaible mapping G so that

p(x) ~ Gy, (p(2)) = G(p(2); bg)

where p(z) is a selected, simple prior, e.g. mv Gaussian

e Mmaximum likelihood estimation direct setting of density
under i.i.d. assumption, KL divergence minimization



Generative modeling

e solution to the information projection problem
JS-divergence minimalization
via playing an adversial game between
generator and discriminator

v

source: https://towardsdatascience.com/generative-adversarial-networks-learning-to-create-8b15709587c9



Partial criterions

e an ideal discriminator
D:xeR?—(0,1), i.e., logD : x — (—0,0)
we would like Dy (%) — 1, Dy (x/2*¢) — 0
I.e., maximize w.r.t. 0,; for generator fixed

09(Dy, (x7)) + log(1 — Dy, (z %))

e an ideal generator
generator wants to fool discriminator,
i.e., it generates @/ so that Dy (x/%*¢) — 1
tune weights 6, of the generator to minimize

log(1 — Dy, (27%"*)) = log(1 — Dy,(Gy,(2))

w.r.t 04 for discriminator fixed



Compound criterion

e compound criterion

V(D,G) =Egp...()[109 Dg,(®)] + Egpp(2)[109(1 — Dy, (Gg,(2))]

e Minimax optimization - set 0,4, 04 using
minmaxV(Dy ., G
jinma (Dy,, Go,)
e alternate optimization

- for fixed generator Ggg maximize V(ng, )

- for fixed discriminator Dy, minimize V(°,Geg)



T heoretical analysis

e Proposition. Optimizing ming maxp V (D, G) corresponds to
minimizing D jsp(Pyatal|Pg). It attains its global minimum
(= -log(4)) if and only if Pyyt3 = Pe.

source: https://arxiv.org/abs/1406.2661



A GAN concept

Real faces
n Discriminator Real
XD
Q-+ &2
‘ -
XD
Generator
Fake
o <
R e
RO/DM —l
T T
~ol Generated faces

source: https://medium.com/sigmoid/a-brief-introduction-to-gans



LLearning algorithm

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k& = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {'r“} ..... Iim}} from noise prior pg(z).
e Sample minibatch of m examples {:1{“I ..... :1{""” } from data generating distribution
:1'91:13121(3t )

e Update the discriminator by ascending its stochastic gradient:

€05 o (20) s (10 (0 (-9)))]

=

end for
e Sample minibatch of m noise samples {=1) ... ="} from noise prior p,(=).
e Update the generator by descending its stochastic gradient:

m

P I CIC))]

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

source: https://arxiv.org/abs/1406.2661



MNIS T dataset

e 60000 - 28x28 greyscale images of handwritten digits

http://yann.lecun.com/exdb/mnist/
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MNIS T dataset

e 60000 - 28x28 greyscale images of handwritten digits

GAN architecture: D,G - perceptron networks
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MNIS T dataset

e 60000 - 28x28 greyscale images of handwritten digits GAN

architecture: D,G - convolution networks

ST OCND NN
TOANV—~Q—=rM K
— e Nhe—-—0F ~—
QM- 0 "2~
ARAS DS NN

~—P HNT M- —
NTlf, 9—c~tnee
Y=\~ oS
ND~ N= NV




cGAN - 2014

e Conditional Generative Adversarial Nets https://arxiv.org/abs/1411.1784

e unconditional vs. conditional GAN, y — condition

Epmpyara (@) 109 D(@)] + Egpop (2)[109(1 — D(G(2))]
Epmpyara (@109 D(@|Y)] + Egpop, (2)[109(1 — D(G(2|y))]

e conditioning by extending latent variable of generator
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MNIS T dataset
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DCGAN - 2015

® Unsupervised Representation Learning with Deep Convolutional
Generative Adversarial Networks https://arxiv.org/abs/1511.06434

e architecture - uses convolutional layers




LSUN dataset

e 10 - categories, (church_outdoor, bedroom, bridge ...

https://www.yf.io/p/Isun

LSUN/c hu rch_outdoor

m’ s nﬁd

LSUNFhEd room




DCGAN - 2015

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated noise textures across multiple samples such as the base boards of some of
the beds.



DCGAN - 2015
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StackGAN - 2016

® StackGAN: Text to Photo-realistic Image Synthesis with Stacked
Generative Adversarial Networks https://arxiv.org/abs/1612.03242

e Caltech-UCSD Birds 200 Dataset
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html|

e 102 Category Flower Dataset
https://www.robots.ox.ac.uk/ vgg/data/flowers/102/



StackGAN - 2016

Play Slideshow < Previous Photo Mext Photo »
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Yellow_Headed_Blackbird_0017_8511_jpg

a bird has a bright golden crown and throat, it's breast is yellow, and back is black
upper body yellow and lower black with black color around beak
this bird has a bright yellow crown, a long straight bill, and white wingbars

this is a black bird with a yellow head and breast ...



StackGAN - 2016

| Conditioning |
| Augmentation (CA) |

Text description t Embedding ¢, | My
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Figure 2. The architecture of the proposed StackGAN. The Stage-1 generator draws a low-resolution image by sketching rough shape and
basic colors of the object from the given text and painting the background from a random noise vector. Conditioned on Stage-1 results, the
Stage-1I generator corrects defects and adds compelling details into Stage-I results, yielding a more realistic high-resolution image.



StackGAN - 2016

A small bird A small vellow  This small bird

The bird 15 A bird with a This small with varying bird with a has a white
Text Thizs birdisred  shortand medium orange  black bird has shades of black crown breast, light
descripti and brown in stubby with bill white body  ashort, slightly  brown with and a short grey head, and
cription color, with a vellow on its gray wings and cwrved bill and  white under the  black pointed black wings
stubby beak body webbed feet long legs eves beak and tail
256:236
StackGAN
Figure 3. Example results by our StackGAN conditioned on text descriptions from CUB test set.
This flower i3 This flower has  This flower iz
This flower has  pink, white, petals that are white and Eggs fnut A street sign
Text a lot of small and vellow in dark pink with  yellow in color, A group of candy nuts on 2 stoplight
description purple petals in -~ color, and has  white edges with petals that A picture of a people om skiz  and meat pole in the
a dome-like petals that are and pink are wavy and very clean stand in the served on middle of 2
configuration striped stamen smooth living room SHOW white dizh day
i T L
136x236
StackGAN

Figure 4. Example results by our StackGAN conditioned on text descriptions from Oxford-102 test set and COCO validation set



StackGAN - 2016

This bird is The bird has This is a small,  This bird is
This bird 15 This bird has A white bird white, black, small beak, black bird with  white black and
Text bloe with white  wings that are with a black and brown in with reddish a white breast vellow in color,
description and has a Very brown and has crown and color, with a brown crown ahd white on with a short
short beak a vellow belly vellow beak brown beak and gray belly the wingbars. black beak

Stage-1
images

- ¢
- 3

Figure 5. Samples generated by our StackGAN from unseen texts in CUB test set. Each column lists the text description, images generated
from the text by Stage-1 and Stage-1I of StackGAN.

Stage-II
images

e https://github.com/hanzhanggit/StackGAN



BEGAN - 2017

e BEGAN: Boundary Equilibrium Generative Adversarial Networks
https://arxiv.org/abs/1703.10717

e ecnergy based GAN, discriminator assigns low energy values
to real data and high to fake ones - generalized view of |0ss

functions, training - 10ss minimization

V(D,G) =By () Do, (@] + Eyop(o)[(m — Dy, (G, (2))) 4]

where m is a positive margin, (-)4 = max(0,-) and 0 < Dy,



BEGAN - 2017

e discriminator as autonecoder

O X0
(S e DI e
ot Y

e SO
//,W/I \\ﬁg\;

ource: https://www.mygreatlearning.com/blog/autoencoder/

e |0ss - reconstruction errors for real and fake images

Dg(Treq1) = ||Dec(Enc(®yeqr)) — Trearll — 0
De(xfake> — ||D€C(Enc(wfake)) - wfake” — 00



BEGAN - 2017

e architecture of generator/decoder and encoder

| Embedding (h} |
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CelebA dataset

e CelebA dataset - 202599 annotated (40 attributes)
celebrity portraits

000007.jpg

000010,jpg 000011.jpg 000015.jpg
m & @ \ I ﬂ m
i #
1 Y
000017 jpg 000018, jpg 000019.jpg 000020.jpg 000021.jpg 000022, jpg 000023.jpg 000024, jpg

e http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html



CelebA - DCGAN

e |learning progess




CelebA - DCGAN

e detoriation starts




DCGAN

e Mmode collapse




BEGAN - 2017

e generated fake images

Figure 3: Random 64x64 samples at varying v € {0.3,0.5,0.7}



PGGAN - 2017

® Progressive Growing of GANSs for Improved Quality, Stability,
and Variation https://arxiv.org/abs/1710.10196 (NVIDIA)

o CelabA HQ dataset - 30000 imgs at 1024x1024 resolution

Figure 8: Creating the CELEBA-HQ dataset. We start with a JPEG image (a) from the CelebA in-
the-wild dataset. We improve the visual quality (b,top) through JPEG artifact removal (b,middle) and
4x super-resolution (b,bottom). We then extend the image through mirror padding (c) and Gaussian
filtering (d) to produce a visually pleasing depth-of-field effect. Finally, we use the facial landmark
locations to select an appropriate crop region (e) and perform high-quality resampling to obtain the
final image at 1024 x 1024 resolution (f).



PGGAN - 2017

® Progressive Growing of GANSs for Improved Quality, Stability,
and Variation https://arxiv.org/abs/1710.10196

e architecture - progressive growing of convolutional layers

G Latent Latent Latent
+

& 3d

8B  —

il

1024x1024 |

i

i .

: L -

: |Reals t Reals iineals

D i 1024x1024 |

|

[ 8x8
4x4

L J

Training progresses

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4x4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable
throughout the process. Here refers to convolutional layers operating on N x N spatial
resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024 x 1024.



PGGAN - 2017

Figure 5: 1024 x 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations.

e https://github.com/tkarras/progressive_growing_of_gans



StyleGAN - 2018

® A Style-Based Generator Architecture for Generative Adversarial
Networks https://arxiv.org/abs/1812.04948

Latent z € Z Latent z € Z Noise

Synthesis network g
Const 4x4x512
e & B]

(a) Traditional (b) Style-based generator

Figure 1. While a traditional generator [ ()] feeds the latent code
though the input layer only, we first map the input to an in-
termediate latent space VY, which then controls the generator
through adaptive instance normalization (AdaIN) at each convo-
lution layer. Gaussian noise is added after each convolution



StyleGAN - 2018

® style disentanglement

Source B

Source A

Coarse from B

Middle styles

Fine from B

Figure 3. Two sets of images were generaled from their respective latent codes (sources A and B); the rest of the images were generated by
copying a specified subset of styles from source B and taking the rest from source A. Copying the styles corresponding to coarse spatial
resolutions (4% — 87) brings high-level aspects such as pose, general hair style, face shape, and eyeglasses from source B, while all colors



StyleGAN2 - 2019

® Analyzing and Improving the Image Quality of StyleGAN
https://arxiv.org/abs/1912.04958

Figure 1. Instance normalization causes water droplet -like artifacts in StyleGAN images.



StyleGAN2 - 2019

® Analyzing and Improving the Image Quality of StyleGAN
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Figure 2. We redesign the architecture of the StyleGAN synthesis network.



StyleGAN2 - 2019

® abandonment of progressive growing

Figure 6. Progressive growing leads to “phase™ artifacts. In this
example the teeth do not follow the pose but stay aligned to the
camera, as indicated by the blue line.

® https://github.com/NVlabs/stylegan2



StyleGAN-ADA - 2020

® Training Generative Adversarial Networks with Limited Data
Using Adaptive Discriminator Adaptation - (ADA)
https://arxiv.org/abs/2006.06676

METFACES (new dataset) BRECAHAD AFHQ CAT, DOG, WILD (512%) CIFAR-10
1336 img, 10242, transfer learning from FFHQ) 4739 img 4738 img 50k, 10 cls, 322

Figure 10: Example generated images for several datasets with limited amount of training data, trained
using ADA.

e https://github.com/NVlabs/stylegan



StyleGAN3 - 2021

e Alias-Free Generative Adversarial Networks (StyleGAN3)
https://arxiv.org/abs/2106.12423

StyleGAN2 StyleGAN3 (Ours)

7y /. T

Random latent walk using directions from StyleCLIP, GANSpace, and SeFa.

® https://nvlabs.github.io/stylegan3



StyleGAN-XL - 2022

® StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets
https://arxiv.org/abs/2202.00273

Jacamar 1 Retriever Boathouse Jacamar Boathouse
R— - o E . .- |. - : = .
¥ (1 i .‘t.‘_ { : .

E | o3 h‘

Photocopier Trifle Agaric Photocopier Agar.ic

.
-

Fig. 1. Class-conditional samples generated by StyleGANS3 (left) and StyleGAN-XL (right) trained on ImageNet at resolution 2562,

e https://github.com/autonomousvision/stylegan_xI



ImageNet

e over 14 mil. of images from 20 thousand categories
based on the WordNet database (a dictionary)

Pillow Icecream

e ImageNet-1K (1,281/50/100k images) 1000 categories
used in ILSVRC 2012-2017 challenges



BigGAN - 2019

® [ arge Scale GAN Training for High Fidelity Natural Image Synthesis
https://arxiv.org/abs/1809.11096

e we show that GANs benefit dramatically from scaling, and
train models with two to four times as many parameters and
eight times the batch size compared to prior art

e training on 128 to 512 cores of a Google TPUv3 Pod

Batch | Ch. | Param (M) | Shared | Skip-z | Ortho. | Ttr x10° FID IS

256 64 81.5 SA-GAN Baseline 1000 18.65 52.52
512 64 81.5 X X X 1000 15.30 TT(£1.18)
1024 64 81.5 X X X 1000 14.88 63 03{:|:1 42)
2048 64 81.5 X X X 732 12.39 76.85(=x3.83)
2048 | 96 1735 X X X | 295(£18) | 0.54(£0.62) | 02.98(£4.27)
2048 | 96 160.6 7 X X | IS5(E11) | 0.18(£0.13) | 91.94(£1.32)
2048 96 158.3 v v X 152(%7) 8.73(x=0.45) | 98.76(£2.84)
2048 96 158.3 v v v 165(+13) 8.51(+0.32) | 99.31(£2.10)
2048 64 71.3 v v v 3TL(£T) 10. 48{:|:D 10) | 86.90(+0.61)

Table 1: Frechet Inception Distance (FID, lower is better) and Inception Score (IS, higher is better)

for ablations of our proposed modifications. Batch is batch size, Param is total number of param-
eters, Ch. is the channel multiplier representing the number of units in each layer, Shared is using
shared embeddings, Skip-z is using skip connections from the latent to multiple layers, Ortho. is
Orthogonal Regularization, and Itr indicates if the setting is stable to 10° iterations, or it collapses
at the given iteration. Other than rows 1-4, results are computed across 8 random initializations.



BigGAN - 2019

architecture - convolutional layers, no pg




e lTensorkFlow Hub - pretrained weights

L
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BigGAN - 2019

C @ © & https;/thhub.dev/s?module-type=image-generator

= TensorFlow

Filters Clear all
! Image generator

Problem domain - biggan-512

Image generator

Publisher: DeepMind Updated: 12/05 ! 4.3m
BigGAM image generator trained on 512x512 Imagehet.

Model format

TEjs TFLite Coral

Architecture: BigGAM  Dataset Imageiet (ILSVRC-2012-CLS)

TF Version
! Image generator

TF1 TF2

bigbigan-resnet50

Fine tunable ) ]

Publisher: DeepMind Updated: 12/0

& 21m

) Unsuperised BigBiGAM image generation & representation
Architecture - learning madel trained on ImageNet with a smaller (ResNet-50)
encoder architecture.

Architecture: BigBiGAN — Dataset ImageMet (ILSVRC-2012-CLS)

Publisher -

e Lo

! Image generator

biggan-256

Publisher DeepMind Updated

0 i

.Bm

[X)

BigGAN image generator trained on 256x256 Imagehet.

Architecture: BigGAN  Dataset ImageMet (ILSVRC-2012-CLS)

! Image generator

biggan-deep-512

FPublisher DeepMind Updated: 12

in

52020 & 139,

BigGAN-deep image generator trained on 512x512 Imagehlet.

Architecture: BigiGAN-d. . Dataset ImageNet (ILSVRC-2012-C



Frechet Inception Distance

e Inception V3 network - ImageNet classification

. e

Convolution Input Output:

299x299x3 8xBx2048 /
:";ﬂ:;f;: Final part:BxBx2048 - | 1001
Concat
Dropout
Fully connected
Softmax

2048x1x1 ([ ] Take output of

AvgPool layer
(size =2048)

source: https://alquarizm.files.wordpress.com/2019/03/image-4.png?w=1280

o Dy = {IncV3(al, )P, Dyope = {IncV3(ah,;, ) HETP

FID(Dyeals Dpake) = Wa(my, mp, S1,52)

SOTA FID


https://paperswithcode.com/sota/image-generation-on-imagenet-256x256

OpenAl DALL-E - 2021

e DALL-E is a 12-billion parameter version of GPT-3 trained
to generate images from text descriptions, using a dataset

of text-image pairs.

TEXT PROMPT  @n armchair in the shape of an avocado. . ..

AL K

Edit prompt or view more images-.

AI-GEMERATED
IMAGES

® T he supercomputer developed for OpenAl is a single system with more
than 285,000 CPU cores, 10,000 GPUs and 400 gigabits per second of

network connectivity for each GPU server.

® https://openai.com/blog/dall-e



Stable diffusion - 2022

text-to-image model, trained on LAION-5B dataset
which consists of 5.85 billion image-text pairs

training - 256 NVIDIA A100 GPUs on AWS
150,000 GPU-hours (24 days) at a cost of $ 600,000

weights were made public, open-source model
backed by Stability AI company, based in London

several APIs available to play with ...


https://laion.ai/blog/laion-5b/
https://github.com/Stability-AI/stablediffusion
https://stability.ai
https://replicate.com/stability-ai/stable-diffusion?prediction=qffyxjvmbvfdbao7vvv2oss2gq

Open questions

e \What sorts of distributions can GANs model?

e \What can we say about the global convergence of the training
dynamics?

e How does GAN training scale with batch size?

e How can we scale GANs beyond image synthesis?
(text, audio, computer-aided drug design - https://insilico.com)

source: https://distill.pub/2019/gan-open-problems


https://insilico.com

