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Procrastination idea: come up with original 10go
https://beta.dreamstudio.ai/dream

Pre-requisites:

* |inear algebra,

e probabillity laws:
» Bayesrule: p(A,B) = p(B,A) = p(A|B)*p(B) = p(B|A)*p(A)
* |ndependence of A and B: p(A B) = p( ) (B)

This lecture is (at least for me) take-home message of this course.


https://beta.dreamstudio.ai/dream

What can go wrong: inappropriate choice of loss function
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Motivation example: estimation of a motion model
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Motivation example: estimation of a motion model

Unknown distribution
with parameters w
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 \We search for parameters w of unknown distribution
given measurements D = {x1,y1...Xn, YN}
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 \We search for parameters w of unknown distribution
given measurements D = {x1,y1 ...Xn, YN }
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 \We search for parameters w of unknown distribution
given measurements D = {x1,y1 ...Xn, YN }

= argmax (Z log(p(yilxi, W))> + log p(w)

W )
1

= arg min (Z — log(p(yi|xi, W))) + (— log p(w))

log likelihooo prior/regulariser



W W

w" = argmaxp(w|D) = argmin (Z = log(p(yixi,W))) + (—log p(w))

(

log likelihood prior/regulariser

Search for w, that maximizes probability of all y_i's for given
corresponding X_I's while preferring more probable parameters w.

— log(p(yi|xi, W))
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p(y‘X7 W) ~ Ny(/LU1fIJ —|_ wo, 0'2)
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W = arg max Hp(yi‘xia w) | = arg m“ifnZ(wlxi + Wo _.)2
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* |n what sense is the MLE and the LSQ formulations equivalent?

v

W= arg mvf}x Hp(yZ‘X’Lv W) — arg min Z(f(Xz, W) — yZ)Q
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What can go wrong: inappropriate choice of loss function
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Robust regression
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Robust regression

[

L2 landscape
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Uniform noise modelled
=> unfriendly landscape
 Non-convex: Large narrow
plateaus with zero gradient
e (Good initialization required %

Uniform noise omitted

=> GD-friendly landscape
Gradient size encodes distance
Easy to optimize



Shape of robust regression functions [Barron CVPR 2019]
https://arxiv.org/abs/1701.03077
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https://arxiv.org/abs/1701.03077

What can go wrong: inappropriate choice of loss function
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Work-around 1: discretize y-domain and treat the problem as classifcation

left/right steering
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Work-around 1: discretize y-domain and treat the problem as classifcation

left/right steering

Works reasonably for low-dim vy
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Semantic map

What if y are images”?
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Work-around 2: allow multiple hypothesis

Semantic map

Multiple choice loss L(W) = min Hfl(x, W) — y”
[Microsoft, NIPS, 2012], [Koltun, ICCV, 2017] [
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Work-around 2: allow multiple hypothesis
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Semantic map
Problem 1: number of hypothesis may grow exponentially

Multiple choice loss Z(w) = min ||[f(x, w) — y||
[Microsoft, NIPS, 2012], [Koltun, ICCV, 2017] i “~ _

Problem 2: Measuring similarity of images 3



Work-around 3: Conditional Generative Adversarial Networks

Problem 1: number of hypothesis may grow exponentially
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Work-around 3: Conditional Generative Adversarial Networks

Problem 1: number of hypothesis may grow exponentially

%
MK X
|
|
|
|

Semantic map

|
(1) Define generative model that generates blue samples (net with injected noise)
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Work-around 3: Conditional Generative Adversarial Networks
Problem 2: Measuring similarity of images
Probability of being true (red) sample
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Semantic map

(1) Detine generative model that generates blue samples (net with injected noise)
(2) Learn discriminator (i.e. 2-class classifier that discriminate blue from red)
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Work-around 3: Conditional Generative Adversarial Networks
Problem 2: Measuring similarity of images
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Work-around 3: Conditional Generative Adversarial Networks
Problem 2: Measuring similarity of images

Probability of being true (red) sample
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Detfine generative model that generates blue samples (net with injected noise)

L earn discriminator (i.e. 2-class classifier that discriminate blue from red)

(1)
(2)
(3) Learn the blue sample generator to maximize discriminative loss (fool discrimin.)
(4) lterate -




Prior is important

w* = argmin|{ » —log(p(y:[xi, w))

W

1

log likelihood

prior/regulariser

no prior, powerful class of f, learner is oraculum => zero trn error + overfitting
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p(y|x, w) ~ Ny(w2$2 T W1Z + Wo, 02)

pP(y|x,w)
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p(y|[x,w)
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W = arg Hl‘st Hp(yi\Xq;,W)
)



W

W = arg max (H p(yi|xi, W)

¢ 0



W' = arg max Hp(yz'\XuW)'P(W)
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Phaistos disc
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Prior is important

https://en.wikipedia.org/wiki/Phaistos_Disc
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Prior is important
William of Ockham leprechauns can be
(1287-1347)

https://en.wikipedia.org/wiki/Occam%27s_razor
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https://en.wikipedia.org/wiki/Occam's_razor

W

X

Prior is important

W

= arg min (Z — log(p(yi|xi, W))) + (— log p(w))

1

log likelihooo prior/regulariser

too strong prior, simple f => underfitting
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W

X

— arg min
W

Prior is important

(

1

> - 10g(p(y7:X7:,W))) +

log likelihood

prior/regulariser

good prior

(—logp(w))

J o (i W)

48



Prior is important

1
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2 _lail”
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https://ekamperi.github.io/machine%20learning/2019/10/19/norms-in-machine-learning.html
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Prior is important

w* = arg min (Z — log(p(yi|xi, w))

)

log likelihood

IwlI3

o (Gaussian prior p(w) =

1
o2

_|_

prior/regulariser

(—logp(w))

e 22 => | 2-regularization: ||w/|3

't says: the smaller the better (does everyone agree”???)
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Prior is important

D =

n
L p-norm: zll = 7. |P Spikes are always good
| “p ; i to fight leprechauns

https://ekamperi.github.io/machine%20learning/2019/10/19/norms-in-machine-learning.html



Prior is important

W

w' = arg min (Z — log(p(y:|xi, W))) + (— logp(w))

1

log likelihooo prior/regulariser

IwlI3

 (Gaussian prior p(w) = e 22 => L2-regularization: ||w]|3
o\ 2nx

't says: the smaller the better (does everyone agree”???)

. 1 "
* Laplace prior p(w) =2—be( ) = L1-regularization: |[|w]|,

't says: the sparser the better

e | 2-regression with L1-regularization is known as Lasso
e |nteresting way to avoid overfitting Is using a weak learner
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Prior is important

W

w* = arg min (Z — 1og(p(yq;x7;,w))) +H (—logp(w))

1

log likelihooo prior/regulariser

o 5 s : joints € R
Well restricted class of functions is your fortress, where you hide from leprechauns



Summary

w* = argmin (Z = IOg(p(inz‘»W))> '

(

log likelihooao

- Regression: ML estimate of cont. unimodal distribution
(Gauss, Laplace) with mean in f(x, w)

p(ylx, w) ~ Ny (f(x,w),0%)

* Probability of observing ¥: when measuring X; IS Y1
_ 1 (f (%3, W) — yi)2
p(yi|Xiv W) — Vono? €Xp ( ) 52

* Tralning: minimize L2 loss
W= argmmz (%, W) — y;)°

e Especially f(x, w) inear in w yields quadratic loss and has closed-form so\utign



Summary

w* = argmin (Z — log(p(y:|x;, W))>

(

log likelihooao

» Classification: ML estimate of discrete prob.d. modelled by soft-max function:
eXp(f(X7 Wl))
p(y[x, W) = { exp(f(x,w2)) ] / > exp(f(x, wi) = s(f(x,W))
eXp(f(X7 WS)) k

* Probability of observing y; when measuring X; IS 93_A ’
2

p(Yil|Xi, W) = sy, (£(x;,W)) 1

- Training: minimization of cross-entropy/logistic 10ss
W* = arg mwmz —log s, (f(x;,W))



summary

+ (—logp(w))

prior/regulariser

* Prior is important: |deally restricts the model to the class of functions that:

* Avoid any “not-well justified leprechauns” in the model, => avoid overfitting
e Avoid oversimplifications of the model, => avoid underfitting

* Robotics study different models to solve ditferent problems:
* Projective transformation of pinhole cameras (for camera calibration or stereo)
o (Geometry of Euclidean motion (for point cloud alignment, direct kinematic tasks)
* Motion model of robots such Dubins car, flight, pendulum (for planning/control)

e Structure of animal cortex (for ConvNets)
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Golden grale:
Solve only “Pilcik-free” problems

Lecture 1

Use "Morty-free” data (or at least correct noise model)

outlier

L ecture 3

Lecture 4
ConvNets

Lecture 5
Optimizers &

Avoid traps In learning



Conclusions

 Explained regression and classification as MAP/ML estimator
* Discussed under/overfitting and regularisations
e Summarized

Competencies required for the test T1

Derive MAP/ML estimate for regression and classification for different noise models
Derive L2/L1/cross-entropy/logistic losses,

Understand difference between loss, likelihood and prior

Understand role of prior in underfitting/overfitting.
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