NÁSKOK DÍKY ZNALOSTEM

PROFINIT

Cloud

Profinit Big Data team Alisa Benešová

16.11.2022

Content

- > Cloud
- > Cloud vendors
- > Cloud use cases
- > Cloud architectures
- > Terraform
- > Azure, AWS cost calculator

Cloud

Do you know what cloud is?

PROFINIT

PROFINIT

Cloud

- > What Cloud is?
 - Almost unlimited space in cloud,
 - Collection of different servers, tools,
 - Infrastructure orchestration etc.
 - "pay what you use" (GB, cores, security...)
- > BigData and Cloud?
 - Scalability of computing power and storage,
 - Cost prediction,
 - Click and Go solutions.

Cloud services

> Cloud service = service provided by a cloud provider via Internet.

- > Cloud vendor manages services together with user
 - 3 different levels
 - laaS Infrastructure as a Service
 - PaaS Platform as a Service
 - SaaS Software as a Service

Cloud service vendors

> Amazon, Microsoft, Google, Alibaba = world-wide leaders

> Amazon AWS

- Leader in cloud computing (first in 2008),
- AI, Serverless deployments, IaaS

> Microsoft Azure

- Leader in SaaS (MS platform)
- Enterprise customers

> Google GCP

- Google platform services

> Alibaba Cloud

- Primary cloud in China

- Cloud has changed IT world (hardware, software, security, dataflow, infrastructure...)
- Almost every big player offers a cloud, cloud solution, cloud services to be hosted on cloud

Gartner – magic quadrant

Summary of Major Vendor Emphasis

Note: This is not an evaluation of capabilities, but rather of emphasis.

* The provider may offer public, community or virtual private services

Private Cloud

Cloud deployment options

- > Cloud deployment in an organization
 - Public
 - Private
 - Hybrid
- A public cloud is where an independent third-party provider, owns and maintains compute resources that customers can access over the internet.
- > The private cloud removes this sharing aspect of cloud computing, instead dedicating infrastructure and services to a single "user".
- A hybrid cloud is a model in which a private cloud connects with public cloud infrastructure, enabling an organization to orchestrate workloads across the two environments.

Private clouds – how they are hosted and managed

> Virtual

- Walled-off environment within a public cloud that enables an organization to run its workloads in logical isolation from every other user of the public cloud
- Even though the server is shared by other organizations, the virtual logic ensures that a user's computing resources are private
- Hosted
 - The servers aren't shared with other organizations
 - The service provider configures the network, maintains the hardware and updates the software, but the server is occupied by a single organization
- > Managed
 - The provider manages every aspect of the cloud for the organization, including deploying additional services such as identity management and storage

Private clouds – infrastructure differences

- Software-only
 - Vendor provides the necessary software which runs on an organization's preexisting hardware
 - OpenStack
- Software and hardware
 - All-in-one bundle
 - It's a simple platform that exists on the user's premises and may or may not be providermanaged environments.
 - Azure stack

Cloud use cases

Use cases in real world

- > Prototyping (POC), Dev, Testing
 - BD Architecture is summoned when you need it and comply your project needs
 - When you are not sure
 - What to use (sizing, platform)
 - Not ready to invest to hardware
 - If big data architecture is right for your project

Use cases in real world

- > Prototyping (POC), Dev, Testing
 - Usually cloud native tools, such as HDInsight, Databricks etc.
 - Quick launch
 - You do not care about underlay infrastructure
 - Minimal administration
 - Some ready-made images in cloud-shop
 - Managed software (Kafka, Airflow ...)
 - This might not be most cost effective, if you're summoning too often for a long time.

Use cases in real world

- > Cloud Server instances with installed BD tools
 - Long-term running, almost same as on-premise solution
 - Development, Testing, Production
 - Easy to boost server instances, if you need
 - Long-term running might be ~~~ cost effective (long term plans)
 - You have to care about infrastructure, administration etc.

How to save money in cloud?

> Question for million \$\$\$

- > Turn off your instances, services
 - Terraform is your friend
- > Size you solution properly
 - Linear scaling?
- > Think about arm
- > Use reserved instances
- > Shared responsibility is a budget killer

Cloud Architectures

PROFINIT

Big Data Architectures

- > Cloud fits to BD architectures
 - Native components
 - Services
 - Hybrid solutions

Batch Data Storage Processing Analytics Data Machine Analytical and Sources learning data store reporting **Real-time** Stream message ingestion processing Orchestration

> Lambda and Kappa, IoT

Example of complex Azure BD analytic architecture

PROFINIT

Examples of AWS architecture (reference)

https://aws.amazon.com/blogs/architecture/architecting-swift-connectivity-on-amazon-web-services-aws/

Examples of AWS architecture (draw.io)

Examples of AWS architecture

Reference architectures

https://aws.amazon.com/blogs/architecture/ https://learn.microsoft.com/en-us/azure/architecture/browse/

Terraform – infrastructure as a code

Terraform

- > Open-Source automatization and management of your
 - (cloud) infrastructure
 - Your platform
 - Services
- > Declarative language used define WHAT result you want

Declarative

- Define what you have
 - Red, violet, blue cube
- Define what you want
 - A tower od red, violet, blue cubes

Procedural

- Define what you have
 - Red, violet, blue cube
- Define how to make what you want
 - Put blue cube
 - Put violet cube on blue cube
 - Put red cube on violet cube

Ansible vs. Terraform

> Infrastructure as Code

Ansible	Terraform
Mainly a config tool (once infra is done)	Mainly infra provisioning
Deploy apps	Can deploy apps
Install/update software	
More mature	Relatively new tool
	Advanced in orchestration
Better for configuring infrastructure	Better for provisioning infrastructure

> DevOps usually use both tools

Terraform, case study

- > 3 servers,
- > Several microservices and database in Docker
- > In usual, you must do steps:
 - Prepare private network
 - EC2 server instances
 - Install Docker, tools
 - Security, firewalls etc.
 - Deploy Docker containers. 2. DEPLOY APPS
- > 2 separate teams, usually
- > Adding new servers, security setup, replicating from dev to prod...

1 PROVISIONING

INFRASTRUCTURF

> AUTOMATION VIA TERRAFORM

Terraform, how it works

- Core takes input and plans what needs to be created, updated, destroyed... from current state = execution plan
- > Steps are executed with platform specific tools
- > **Providers** (100 providers)
 - AWS, Azure (laaS)
 - Kubernetes (Paas)
 - Fastly (SaaS)
- Each provider offers resources you can work with

Terraform - steps

> Have the latest version of terraform

- > terraform init
 - Initialize the environment
- > terraform plan
 - To see what will happen
 - Save the plan and apply it otherwise you are not sure what will be executed
- > terraform apply
 - Do the job!

Terraform – steps - example

> -/+ resource "aws ecs task definition" "transformer" {

```
> ~ arn = "arn:aws:ecs:eu-west-1:70332xxxxx2:task-
definition/test-transformer-uat:12" -> (known after apply)
```

- > ~ container_definitions = (sensitive) # forces replacement
 - ~ id = "test-transformer-uat" -> (known after apply)
 - ipc mode = "" -> null
- > pid_mode = "" -> null
 - ~ revision = 12 -> (known after apply)
 - tags = {} -> null
 - # (9 unchanged attributes hidden)

```
> }
```

>

>

>

>

>

- > Plan: 3 to add, 12 to change, 3 to destroy.
- > Saved the plan to: plan.tfplan
- > To perform exactly these actions, run the following command to apply:
- > terraform apply "plan.tfplan"

Terraform – steps - example

- > Apply complete! Resources: 3 added, 12 changed, 3 destroyed.
- > Outputs:
- common_container_sg = "sg-0ae9ceXXXXXXXXda"
- > db_endpoint = "test-uat.ccxxxxxwugh.eu-west-1.rds.amazonaws.com"

Terraform – state file

- > Terraform stores information about your infrastructure in a state file
- This state file keeps track of resources created by your configuration and maps them to real-world resources
- > Extremely important!

- > Can be stored on
 - Localhost
 - S3 / another shared cloud storage
 - HashiCorp paid solution consul

Terraform – sections

- > Resource
 - Managed by terraform
- > Data
 - Managed by others
- > Module
 - Larger independent part
- > Output
 - Output of the terraform script
- > Provider
 - "Connector"
- > Variable
 - Variable

Terraform – modules

- > Structure your code
- > Have a logical structure
- > Create reusable parts
- > Work with variables

Terraform – architecture

> Typically executed from GitHub actions or Jenkins

> First of all you compile your artifacts and store them somewhere

 Then run terraform to create infrastructure and use artifacts from the storage

> You can destroy your dev environment every day and have it off during the weekends ((to be sure that you can build it from the scratch)

Terraform – recommended online course

- > Pluralsight
 - Ned Bellavance
 - Terraform and terraform deep dive
 - Approximately 8 hours

https://www.pluralsight.com/courses/terraform-getting-started

https://www.pluralsight.com/courses/terraform-deep-dive

Cloud Costs

Cost Calculator

- > Check how much you will pay what for
 - Total Cost of Ownership (TCO) Calculator | Microsoft Azure
 - Even electricity cost etc.
 - AWS Pricing Calculator
 - Just UseCase of your setup.

For next hands-on Azure-cloud course

- > Create a NEW account as a student for free
 - Free space, free computing etc.
 - <u>https://azure.microsoft.com/en-us/free</u>

- > Alternative:
- > Create a NEW FREE account with 200 USD to spend for 30 days
 - Be careful, you have to add your credit card !
 - https://azure.microsoft.com/en-us/free/

