Nonlinear Least Squares

Stephen Boyd

EE103
Stanford University

December 6, 2016

Location from range measurements

- 3 -vector x is position in 3-D, which we will estimate
- range measurements give (noisy) distance to known locations

$$
\rho_{i}=\left\|x-a_{i}\right\|+v_{i}, \quad i=1, \ldots, m
$$

- a_{i} are known locations
- v_{i} are noises
- least squares location estimation: choose \hat{x} that minimizes

$$
\sum_{i=1}^{m}\left(\left\|x-a_{i}\right\|-\rho_{i}\right)^{2}
$$

- GPS works like this

Example: Location from range measurements

Levenberg-Marquardt from 3 initial points

Model fitting

$$
\operatorname{minimize} \quad \sum_{i=1}^{N}\left(\hat{f}\left(x^{(i)}, \theta\right)-y^{(i)}\right)^{2}
$$

- model $\hat{f}(x, \theta)$ is parameterized by parameters $\theta_{1}, \ldots, \theta_{p}$
- $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(N)}, y^{(N)}\right)$ are data points
- the minimization is over the model parameters θ
- on page 9.9 we considered models that are linear in the parameters θ :

$$
\hat{f}(x, \theta)=\theta_{1} f_{1}(x)+\cdots+\theta_{p} f_{p}(x)
$$

here we allow $\hat{f}(x, \theta)$ to be a nonlinear function of θ

Example

a nonlinear least squares problem with four variables $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$:

$$
\operatorname{minimize} \sum_{i=1}^{N}\left(\theta_{1} e^{\theta_{2} x^{(i)}} \cos \left(\theta_{3} x^{(i)}+\theta_{4}\right)-y^{(i)}\right)^{2}
$$

Orthogonal distance regression

minimize the mean square distance of data points to graph of $\hat{f}(x, \theta)$

Example: orthogonal distance regression with cubic polynomial

$$
\hat{f}(x, \theta)=\theta_{1}+\theta_{2} x+\theta_{3} x^{2}+\theta_{4} x^{3}
$$

Nonlinear least squares formulation

$$
\operatorname{minimize} \sum_{i=1}^{N}\left(\left(\hat{f}\left(u^{(i)}, \theta\right)-y^{(i)}\right)^{2}+\left\|u^{(i)}-x^{(i)}\right\|^{2}\right)
$$

- optimization variables are model parameters θ and N points $u^{(i)}$
- i th term is squared distance of data point $\left(x^{(i)}, y^{(i)}\right)$ to point $\left(u^{(i)}, \hat{f}\left(u^{(i)}, \theta\right)\right)$

$$
d_{i}^{2}=\left(\hat{f}\left(u^{(i)}, \theta\right)-y^{(i)}\right)^{2}+\left\|u^{(i)}-x^{(i)}\right\|^{2}
$$

- minimizing d_{i}^{2} over $u^{(i)}$ gives squared distance of $\left(x^{(i)}, y^{(i)}\right)$ to graph
- minimizing $\sum_{i} d_{i}^{2}$ over $u^{(1)}, \ldots, u^{(N)}$ and θ minimizes mean squared distance

