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Lecture 2
Linear functions and examples

e linear equations and functions
e engineering examples

e Interpretations
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Linear elastic structure

e 1, is external force applied at some node, in some fixed direction

e y; is (small) deflection of some node, in some fixed direction

5133 i | !

Ty -=|

provided x, y are small) we have y ~ Ax
Yy

e A is called the compliance matrix

e a;; gives deflection ¢ per unit force at 5 (in m/N)

Linear functions and examples



Total force/torque on rigid body

e 1, is external force/torque applied at some point/direction/axis

e y € R® is resulting total force & torque on body
(y1, Y2, y3 are X-, y-, z- components of total force,
Y4, Y5, Yo are x-, y-, z- components of total torque)

e we have y = Ax

e A depends on geometry
(of applied forces and torques with respect to center of gravity CG)

e jth column gives resulting force & torque for unit force/torque j

Linear functions and examples
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Linear static circuit

interconnection of resistors, linear dependent (controlled) sources, and
independent sources

Y3
— < MMN—
0 L2
n= (Do gy = =

e z; is value of independent source j
e 1, is some circuit variable (voltage, current)
e we have y = Ax

e if x; are currents and y; are voltages, A is called the impedance or
resistance matrix

Linear functions and examples 2-10



Final position/velocity of mass due to applied forces

—

e unit mass, zero position/velocity at t = 0, subject to force f(t) for
0<t<n

o f(t)=xforj—1<t<yj,j=1,...,n
(z is the sequence of applied forces, constant in each interval)

e 11, Yo are final position and velocity (i.e., at t = n)
e we have y = Ax
e a;; gives influence of applied force during j —1 < ¢ < j on final position

® ay; gives influence of applied force during 7 —1 < ¢ < j on final velocity
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Gravimeter prospecting

. gi / Javg
y

Pj

® ;= p; — Pavg IS (excess) mass density of earth in voxel j;

e 1, iIs measured gravity anomaly at location i, i.e., some component
(typically vertical) of g; — gavg

o y=Ax
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e A comes from physics and geometry

e jth column of A shows sensor readings caused by unit density anomaly
at voxel j

e 1th row of A shows sensitivity pattern of sensor ¢

Linear functions and examples 2-13



Thermal system

location 4
[ ] [ ] o ./ -
heating element 5
R

L] u
ry
L2
X3
L4
L5

e 1, is power of jth heating element or heat source

e 1, is change in steady-state temperature at location ¢
e thermal transport via conduction

o y—=Ax
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e a;; gives influence of heater j at location ¢ (in °C/W)

e jth column of A gives pattern of steady-state temperature rise due to
1W at heater j

e ith row shows how heaters affect location

Linear functions and examples 2-15



lllumination with multiple lamps

e n lamps illuminating m (small, flat) patches, no shadows

e x; is power of jth lamp; y; is illumination level of patch i

o y= Az, where q;; = T

(cosf;; < 0 means patch i is shaded from lamp j)

max{cos#;;,0}

e jth column of A shows illumination pattern from lamp j

Linear functions and examples
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Broad categories of applications

linear model or function y = Ax

some broad categories of applications:

e estimation or inversion
e control or design

e mapping or transformation

(this list is not exclusive; can have combinations . . . )

Linear functions and examples 2-25



Estimation or inversion

y = Ax

e y; is ith measurement or sensor reading (which we know)
e 1, is jth parameter to be estimated or determined

® a;; Is sensitivity of ith sensor to jth parameter
sample problems:

e find z, given y

e find all x's that result in y (i.e., all £'s consistent with measurements)

e if there is no x such that y = Az, find = s.t. y = Ax (i.e., if the sensor
readings are inconsistent, find = which is almost consistent)
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Control or design

y = Ax

e x is vector of design parameters or inputs (which we can choose)
e y is vector of results, or outcomes

e A describes how input choices affect results
sample problems:

e find x so that Y = Ydes

e find all x's that result in y = yqes (i-€., find all designs that meet
specifications)

e among x's that satisfy y = yqes, find a small one (i.e., find a small or
efficient x that meets specifications)
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Mapping or transformation

e x is mapped or transformed to y by linear function y = Ax

sample problems:

e determine if there is an = that maps to a given y
e (if possible) find an = that maps to y
e find all x's that map to a given y

e if there is only one = that maps to v, find it (i.e., decode or undo the
mapping)
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Example: illumination

e n lamps at given positions above an area divided in m regions

e A;;is illumination in region i if lamp j is on with power 1 and other lamps are off

e x; is power of lamp j

(Ax); is illumination level at region i

b; is target illumination level at region i

Example: m = 252 n = 10; figure shows position and height of each lamp

Least squares

25m
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25m
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Example: illumination

e left: illumination pattern for equal lamp powers (x = 1)

e right: illumination pattern for least squares solution x, with b =1
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Linear-in-parameters model

we choose the model f(x) from a family of models
F(x) = 01fi(x) + 025(x) + - - + 0, fp(x)

e the functions f; are scalar valued basis functions (chosen by us)

e the basis functions often include a constant function (typically, fi(x) = 1)
e the coefficients 6y, ..., 6, are the model parameters

e the model f(x) is linear in the parameters 6;

e if fi(x) = 1, this can be interpreted as a regression model
V= ,BTX” + v
with parameters v = 61, B = 6., and new features X generated from x:

-)Zl — fZ(x)’ SR )Zp — fp(x)

Least squares data fitting 9.9



fit linear-in-parameters model to data set (x(l), y(l)), (x(N),y(N))

Least squares model fitting

residual for data sample i is

r = 3@ — £y = 3O _ g, f(x®D) = - .. — gpfp(x(i))

least squares model fitting: choose parameters 6 by minimizing MSE

this is a least squares problem: minimize ||A8 — y4||? with

[ AGWD)
fi(x?)

| AGO)

Least squares data fitting
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Example: polynomial approximation

f(X) — 91 + 92)(,' + 93)(2 4+ ...+ prp—l
-1

e a linear-in-parameters model with basis functions 1, x, ..., x”

e least squares model fitting: choose parameters 6 by minimizing MSE

= (00 = FGON 4 6 = FON 4 o) = fa)2)

e in matrix notation: minimize ||A6 — y9||* with

[ 1 x(l) (x(l))2 .« .. (x(l))p_l ] [ y(l) ]

Least squares data fitting



Example

A

f(x)

degree 6

f(x)

data set of 100 examples

Least squares data fitting
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Piecewise-affine function

e define knot points a1 < ar < - -+ < aj on the real axis
e piecewise-affine function is continuous, and affine on each interval [ay, ax+1]

e piecewise-affine function with knot points ay, ..., a; can be written as

F(x) =01 +0ax + 03(x —ar)s + - + O (x — ag)s

where 1, = max {u,0}

(x+ 1), (x = 1),

3 30

2| 2|

1| 1|

0 0
| | | | | | | x | | | | | | | x
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
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Piecewise-affine function fitting
piecewise-affine model is in linear in the parameters 6, with basis functions

fix) =1, Hx)=x, fx)=&-a))w, ..., fie2(x)=(x—ap)+

Example: fit piecewise-affine function with knots a; = —1, a, = 1 to 100 points

f(x)

Least squares data fitting 9.14



Generalization and validation

Generalization ability: ability of model to predict outcomes for new, unseen data

Model validation: to assess generalization ability,

e divide data in two sets: training set and test (or validation) set
e use training set to fit model
e use test set to get an idea of generalization ability

e this is also called out-of-sample validation

Over-fit model

e model with low prediction error on training set, bad generalization ability

e prediction error on training set is much smaller than on test set

Least squares data fitting 9.21



Example: polynomial fitting

-e-Train
-= Test | |

Relative RMS error

0.2} :

0 2 4 6 8 10 12 14 16 18 20

Degree
e training set is data set of 100 points used on page 9.11
e test set is a similar set of 100 points

e plot suggests using degree 6

Least squares data fitting 9.22



Over-fitting

polynomial of degree 20 on training and test set

Fx) training set Fx) test set

over-fitting is evident at the left end of the interval

Least squares data fitting 9.23



Auto-regressive (AR) time series model

L1 =Prze o+ BuZ—m+1s t=M,M+1,...

® 71, 72, ... IS atime series
e 7;,1 is a prediction of z;,1, made at time ¢
e prediction Z;, is a linear function of previous M values z;, ..., Z;—pm+1

e M is the memory of the model
Least squares fitting of AR model: given oberved data zy, ..., z7, minimize

~ 2 N 2 A \2
(zM+1 — Zm+1)” + 2pm+2 — Zm+2)” + -+ (27 — 271)

this is a least squares problem: minimize ||AB — y4||*> with

M IM-1 - 4| B1 IM+1

oz o 22 | B d_ | zm+2
A= : : : ? ﬁ _ : ? y = :
| Zr-1 -2t ZT-M | | Bm | 2T

Least squares data fitting 9.19



Example: hourly temperature at LAX

00

68 |
66

64 |

Temperature (°F)

60| °

58 |

56| ¢ 1

e blue line shows prediction by AR model of memory M = 8
e model was fit on time series of length T = 744 (May 1-31, 2016)

e plot shows first five days

Least squares data fitting 9.20
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10. Multi-objective least squares

multi-objective least squares
e regularized data fitting
e control

e estimation and inversion
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Multi-objective least squares

we have several objectives
_ 2 _ 2
Ji=lAix=bll5, ..., Ji = ||Agx = bl

e A;is an m; X n matrix, b; is an m;-vector
e we seek one x that makes all k objectives small

e usually there is a trade-off: no single x minimizes all objectives simultaneously

Weighted least squares formulation: find x that minimizes
AlA1x = by]? Apx — by)?
A = br||” + - - + Al Agx = D]

e coefficients A1, ..., A} are positive weights
e weights A; express relative importance of different objectives

e without loss of generality, we can choose 41 = 1

Multi-objective least squares 10.2



Solution of weighted least squares

e weighted least squares is equivalent to a standard least squares problem

i . i T2
VA1A] VA1by
VA2 Ay VAoby

| VAAK RZ7a

minimize

e solution is unique if the stacked matrix has linearly independent columns
e cach matrix A; may have linearly dependent columns (or be a wide matrix)

e it the stacked matrix has linearly independent columns, the solution is

-1
%= (AlA{Al bt AkA{Ak) (/uA{bl bt AkA{bk)

Multi-objective least squares 10.3



Example with two objectives

minimize  [|A1x — by||2 + A||Axx — bo||?

Arand Ay are 10 X 5

1= %1(2)
0.6 — X2(A)
| =
0.4 — X4
— X5(1)
0.2
0
-0.2
1074 1072 109 102 10%
A

plot shows weighted least squares solution x(1) as function of weight A

Multi-objective least squares 10.4



Example with two objectives

minimize  [|A1x — by||2 + A||Axx — bo||?

14 | 14 |
12+ 17|
10 107}
=
8 I \N 8 |
6| 6
— J1(2)
Hl—nW) 41
1074 1072 109 102 104 6 8 10 12 14 16
A J1(Q)

e left figure shows Ji(1) = ||[A1£(1) — b1]|? and (1) = ||A2£(A) — by||?

e right figure shows optimal trade-off curve of J>(1) versus Ji(A)

Multi-objective least squares 10.5
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Motivation

e consider linear-in-parameters model

A

f(x)=01fi(x)+---+0,f,(x)

we assume fj(x) is the constant function 1
e we fit the model £(x) to examples (x(1), y(D), ... (xV), y(V))
e large coefficient §; makes model more sensitive to changes in f;(x)
e keeping 6, ..., 6, small helps avoid over-fitting

e this leads to two objectives:
A (k) (k)y2 .
J10) = 2 (F) =) a(0) = D65
k=1 j=2
primary objective J1(6) is sum of squares of prediction errors

Multi-objective least squares 10.6



Weighted least squares formulation

N p
minimize J;(0) + A1J2(0) = Z(f(x(k)) - y(k))2 +4 Z 9]2'
k=1 Jj=2

e 1 is positive reqgularization parameter
e equivalent to least squares problem: minimize

“[\/_Azl [yOdl

2

with yd = (y(1, ., y(V)),

1 HD)y . fp(x(l)) ] 0 1 0 0

2y ... (2)
g |1 A RO |0 0T o
AT ) (000 -~ 1

e stacked matrix has linearly independent columns (for positive A)

e value of A can be chosen by out-of-sample validation or cross-validation

Multi-objective least squares 10.7



Example

eTrain
-1} e Test | |

e solid line is signal used to generate synthetic (simulated) data
e 10 blue points are used as training set; 20 red points are used as test set

e we fit a model with five parameters 61, ..., 05:

4
f(x) = 01+ > Opsr sin(wrx + ) (with given wy, ¢)
k=1

Multi-objective least squares 10.8



Result of regularized least squares fit

RMS error versus A Coefficients versus A
1.2 = f f f f f — 2 T T T T T ]
— Train —01—06,
1| |— Test B i N
| I
0.8} S
0.6 | 2 0
04} 1l
—1 .

0.2 1

0 L | _2 | |

10> 1073 107! 100 10 10 10> 107 107! 100 10°
A A
e minimum test RMS error is for A4 around 0.08
e increasing A “shrinks” the coefficients 65, ..., 05
e dashed lines show coefficients used to generate the data

e for A near 0.08, estimated coefficients are close to these “true” values

Multi-objective least squares
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Control

y=Ax+b

® X is n-vector of actions or inputs
e y is m-vector of results or outputs

e relation between inputs and outputs is a known affine function

the goal is to choose inputs x to optimize different objectives on x and y

Multi-objective least squares 10.10



Optimal input design

Linear dynamical system

y(t) = hou(t) + hu(t = 1) + hou(t —2) + - - - + hu(0)

output y(¢) and input u(t) are scalar
e we assume input u(z) is zero fort < 0
e coefficients hq, hy, ...are the impulse response coefficients

e output is convolution of input with impulse response

Optimal input design
e optimization variable is the input sequence x = (u(0),u(1),...,u(N))

e goal is to track a desired output using a small and slowly varying input

Multi-objective least squares
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Input design objectives

e primary objective: track desired output yg4es over an interval [0, NV]:

N
J(x) = 23(00(1) = yaes(1))
t=0

e secondary objectives: use a small and slowly varying input signal:

N N-1
In(0) = D u@? ()= 3+ 1)~ u(@)?
t=0

=0

Multi-objective least squares
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with

Multi-objective least squares

0
hg
h

hn-2
hn-1

Tracking error

Ji(x)

0
0
hg

hy-3
hy-2

= ||Ax - b?
0O 0 |
0O O
0O O
ho O
hy hy

N
Z()’(t) - ydes(l‘))2
=0

Ydes(0)
Ydes(1)
Ydes(2)

)’des(];] — 1)
Ydes(N)
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Input variation and magnitude

Input variation

N-1
Ju(x) = D (u(t + 1) = u(1))” = ||Dx|)*
1=0

with D the N X (N + 1) matrix

(-1 1 0 --- 0 0 0]

o -1 1 --- 0 00

D = s P : P
0O 0 0 -1 1 0

0O 0 O 0 -1 1

Input magnitude

N
Jn(x) = D> u(®)* = |Ix||?
=0

Multi-objective least squares
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Example

0
/les E/

small A,

2| |

0 100 200 0 100 200

larger Ay 3
larger Ay

0 100 200 0 100 200

Multi-objective least squares 10.15
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Estimation

Linear measurement model
V= AXex +V

e n-vector xex contains parameters that we want to estimate
e m-vector v is unknown measurement error or noise
e m-vector y contains measurements

e m X n matrix A relates measurements and parameters

Least squares estimate: use as estimate of x¢x the solution X of

minimize ||Ax — y||?

Multi-objective least squares 10.16



Regularized estimation

add other terms to ||Ax — y||? to include information about parameters

Example: Tikhonov regularization
L 2 2
minimize ||[Ax — y||© + ]| x||

e goal is to make |[|Ax — y|| small with small x

e equivalent to solving
(ATA+ aDx = Aly

e solution is unique (if 4 > 0) even when A has linearly dependent columns

Multi-objective least squares 10.17



Signal denoising

e observed signal y is n-vector

Y = Xex +V

® Xcx iS Unknown signal

® V iS noise

0 500 1000

Least squares denoising: find estimate X by solving

n—1
minimize  [|lx — Y[ + 2 > (xi+1 — x;)°
i=1

goal is to find slowly varying signal X, close to observed signal y

Multi-objective least squares 10.18



Matrix formulation

2
minimize ! X — Y
VaD 0
e Dis (n— 1) x n finite difference matrix
(-1 1.0 -~ 0 0 0]
o -1 1 --- 0O 0 O
D = s P s P
0O 0 O -1 1 0
0O 0 O 0 -1 1

e equivalent to linear equation

(I+AD'D)x =y

Multi-objective least squares 10.19



Trade-off

the two objectives ||X(1) — y|| and || Dx(A)|| for varying A

10

— ) =y
— DS

6 _
=
<=
4 i |
2
0
1072 109 10° 1010 8 10
A |£(1) = |
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Three solutions

A=10""

£(A)k
£(A)k

0 500 1000 0 500 1000
k k
1.5 1=10
e (1) > yfora —0 x
> 1 -
o (1) — avg(y)l for 4 — o =
e 1~ 10%is good compromise
0.5 |
0 500 1000

Multi-objective least squares k 10.21



Image deblurring
V= AXex +V

® Xex IS Unknown image, y is observed image
e A is (known) blurring matrix, v is (unknown) noise

e images are M X N, stored as M N-vectors

blurred, noisy image y deblurred image X

Multi-objective least squares 10.22



Least squares deblurring

minimize  ||Ax — y||* + A(|| Dyx||* + || Dpx||?)

e 1stterm is “data fidelity” term: ensures AX = y

e 2nd term penalizes differences between values at neighboring pixels

2

—1 M-1 N

M
IDpxll? + 1Dyl = D" > (Xije1 = Xi)* + > > (Xivrj — Xij)?
i=1 j=1

i=1j

I
[E—

if X isthe M X N image stored in the M N-vector x

Multi-objective least squares
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Differencing operations in matrix notation

suppose x is the M X N image X, stored column-wise as M N-vector

x = (X1p1o X1:m25 - -

- X1:MN)

e horizontal differencing: (N — 1) X N block matrix with M x M blocks

0 0 0]
0O 0 O

0 -1 I

e vertical differencing: N X N block matrix with (M — 1) X M blocks

D
0

0

Multi-objective least squares

0
D

0

0]

0

D =

(-1 1 0 -~ 0
0 -1 1 -+ 0
0 0 0 --- -1

0
0

1 .
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Deblurred images

Multi-objective least squares 10.25



v

vV v vvY

Tomography

goal is to reconstruct or estimate a function d : R> — R from
(possibly noisy) line integral measurements

d is often (but not always) some kind of density
we'll focus on 2-D case, but it can be extended to 3-D
used in medicine, manufacturing, networking, geology

best known application: CAT (computer-aided tomography) scan



Computer Tomography (CT)

Multiple row
detector

1/1



Discretization of d

we d is constant on n pixels, numbered 1 to n
represent (discretized) density function d by n-vector z

x; is value of d in pixel i

vV v . v v

line integral measurement y; has form
n
yi =Y Az +uv;
=1
> A;j; is length of line ¢; in pixel j

> in matrix-vector form, we have y = Az +v

Line integral measurements



Hlustration

T T2

L6 /

(anyo) "A{

y = 1.06x16 + 0.80x17 + 0.27x12 + 1.06x13 + 1.06214 + 0.53215 + 0.54x10 + v

Line integral measurements



Example

Line integral measurements



Line integral measurements

Another example

11



Smoothness prior

> we assume that image is not too rough, as measured by (Laplacian)

IDyal|* + || Dnz*

— Dpx gives first order difference in horizontal direction
— D,z gives first order difference in vertical direction

> roughness measure is sum of squares of first order differences

> it is zero only when z is constant

Least-squares reconstruction
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Least-squares reconstruction

» choose Z to minimize

1Az = ylI* + A Dy | + [ Dni[|*)

— first term is ||v||?, or deviation between what we observed (y) and
what we would have observed without noise (Ax)
— second term is roughness measure

> regularization parameter A > 0 trades off measurement fit versus
roughness of recovered image

Least-squares reconstruction
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Example

> 50 x 50 pixels (n = 2500)
> 40 angles, 40 offsets (m

» 600 lines shown

1600 lines)

» small measurement noise

16

Example



reconstruction with A = 10

Example

Reconstruction

17



Reconstruction

reconstructions with A = 109, 20, 230, 2600

Example

18



Varying the number of line integrals

reconstruct with m = 100, 400, 2500, 6400 lines (with A\ = 10, 15, 25, 30)

e
'.“P'!. I
s

Example 19



