
Optimalizace

Použit́ı lineárńı úlohy nejmenš́ıch čtverc̊u (a podobných)

Tom Werner

FEL ČVUT

Mnoho aplikaćı úlohy

min
x∈Rn

‖Ax− b‖2

je v knize (zdarma ke stažeńı i se slajdy):

Slides on the following pages are compiled from various courses by S.Boyd and L.Vanderberghe.

1 / 1

EE263 Autumn 2008-09 Stephen Boyd

Lecture 2
Linear functions and examples

• linear equations and functions

• engineering examples

• interpretations

2–1

Linear elastic structure

• xj is external force applied at some node, in some fixed direction

• yi is (small) deflection of some node, in some fixed direction

x1

x2

x3

x4

(provided x, y are small) we have y ≈ Ax

• A is called the compliance matrix

• aij gives deflection i per unit force at j (in m/N)

Linear functions and examples 2–8

Total force/torque on rigid body

x1

x2

x3

x4

CG

• xj is external force/torque applied at some point/direction/axis

• y ∈ R6 is resulting total force & torque on body
(y1, y2, y3 are x-, y-, z- components of total force,
y4, y5, y6 are x-, y-, z- components of total torque)

• we have y = Ax

• A depends on geometry
(of applied forces and torques with respect to center of gravity CG)

• jth column gives resulting force & torque for unit force/torque j

Linear functions and examples 2–9

Linear static circuit

interconnection of resistors, linear dependent (controlled) sources, and
independent sources

x1

x2

y1 y2

y3

ib

βib

• xj is value of independent source j

• yi is some circuit variable (voltage, current)

• we have y = Ax

• if xj are currents and yi are voltages, A is called the impedance or
resistance matrix

Linear functions and examples 2–10

Final position/velocity of mass due to applied forces

f

• unit mass, zero position/velocity at t = 0, subject to force f(t) for
0 ≤ t ≤ n

• f(t) = xj for j − 1 ≤ t < j, j = 1, . . . , n

(x is the sequence of applied forces, constant in each interval)

• y1, y2 are final position and velocity (i.e., at t = n)

• we have y = Ax

• a1j gives influence of applied force during j − 1 ≤ t < j on final position

• a2j gives influence of applied force during j − 1 ≤ t < j on final velocity

Linear functions and examples 2–11

Gravimeter prospecting

ρj

gi gavg

• xj = ρj − ρavg is (excess) mass density of earth in voxel j;

• yi is measured gravity anomaly at location i, i.e., some component
(typically vertical) of gi − gavg

• y = Ax

Linear functions and examples 2–12

• A comes from physics and geometry

• jth column of A shows sensor readings caused by unit density anomaly
at voxel j

• ith row of A shows sensitivity pattern of sensor i

Linear functions and examples 2–13

Thermal system

x1
x2
x3
x4
x5

location 4

heating element 5

• xj is power of jth heating element or heat source

• yi is change in steady-state temperature at location i

• thermal transport via conduction

• y = Ax

Linear functions and examples 2–14

• aij gives influence of heater j at location i (in ◦C/W)

• jth column of A gives pattern of steady-state temperature rise due to
1W at heater j

• ith row shows how heaters affect location i

Linear functions and examples 2–15

Illumination with multiple lamps

pwr. xj

illum. yi

rijθij

• n lamps illuminating m (small, flat) patches, no shadows

• xj is power of jth lamp; yi is illumination level of patch i

• y = Ax, where aij = r−2
ij max{cos θij, 0}

(cos θij < 0 means patch i is shaded from lamp j)

• jth column of A shows illumination pattern from lamp j

Linear functions and examples 2–16

Broad categories of applications

linear model or function y = Ax

some broad categories of applications:

• estimation or inversion

• control or design

• mapping or transformation

(this list is not exclusive; can have combinations . . .)

Linear functions and examples 2–25

Estimation or inversion

y = Ax

• yi is ith measurement or sensor reading (which we know)

• xj is jth parameter to be estimated or determined

• aij is sensitivity of ith sensor to jth parameter

sample problems:

• find x, given y

• find all x’s that result in y (i.e., all x’s consistent with measurements)

• if there is no x such that y = Ax, find x s.t. y ≈ Ax (i.e., if the sensor
readings are inconsistent, find x which is almost consistent)

Linear functions and examples 2–26

Control or design

y = Ax

• x is vector of design parameters or inputs (which we can choose)

• y is vector of results, or outcomes

• A describes how input choices affect results

sample problems:

• find x so that y = ydes

• find all x’s that result in y = ydes (i.e., find all designs that meet
specifications)

• among x’s that satisfy y = ydes, find a small one (i.e., find a small or
efficient x that meets specifications)

Linear functions and examples 2–27

Mapping or transformation

• x is mapped or transformed to y by linear function y = Ax

sample problems:

• determine if there is an x that maps to a given y

• (if possible) find an x that maps to y

• find all x’s that map to a given y

• if there is only one x that maps to y, find it (i.e., decode or undo the
mapping)

Linear functions and examples 2–28

Example: illumination

• n lamps at given positions above an area divided in m regions

• Ai j is illumination in region i if lamp j is on with power 1 and other lamps are off

• x j is power of lamp j

• (Ax)i is illumination level at region i

• bi is target illumination level at region i

Example: m = 25
2, n = 10; figure shows position and height of each lamp

0 25m
0

25m

1 (4.0m)
2 (3.5m)

3 (6.0m)

4 (4.0m)

5 (4.0m)

6 (6.0m)

7 (5.5m)

8 (5.0m)
9 (5.0m) 10 (4.5m)

Least squares 8.7

Linear-in-parameters model

we choose the model f̂ (x) from a family of models

f̂ (x) = θ1 f1(x) + θ2 f2(x) + · · · + θp fp(x)

• the functions fi are scalar valued basis functions (chosen by us)

• the basis functions often include a constant function (typically, f1(x) = 1)

• the coefficients θ1, . . . , θp are the model parameters

• the model f̂ (x) is linear in the parameters θi

• if f1(x) = 1, this can be interpreted as a regression model

ŷ = βT x̃ + v

with parameters v = θ1, β = θ2:p and new features x̃ generated from x:

x̃1 = f2(x), . . . , x̃p = fp(x)

Least squares data fitting 9.9

Least squares model fitting

• fit linear-in-parameters model to data set (x(1), y(1)), . . . , (x(N), y(N))

• residual for data sample i is

r(i) = y
(i) − f̂ (x(i)) = y

(i) − θ1 f1(x
(i)) − · · · − θp fp(x

(i))

• least squares model fitting: choose parameters θ by minimizing MSE

1

N

(
(r(1))2 + (r(2))2 + · · · + (r(N))2

)

• this is a least squares problem: minimize ‖Aθ − y
d‖2 with

A =

f1(x
(1)) · · · fp(x

(1))

f1(x
(2)) · · · fp(x

(2))
... ...

f1(x
(N)) · · · fp(x

(N))

, θ =

θ1
θ2
...

θp

, y
d
=

y
(1)

y
(2)

...

y
(N)

Least squares data fitting 9.10

Example: polynomial approximation

f̂ (x) = θ1 + θ2x + θ3x2
+ · · · + θpxp−1

• a linear-in-parameters model with basis functions 1, x, . . . , xp−1

• least squares model fitting: choose parameters θ by minimizing MSE

1

N

(
(y(1) − f̂ (x(1)))2 + (y(2) − f̂ (x(2)))2 + · · · + (y(N) − f̂ (x(N)))2

)

• in matrix notation: minimize ‖Aθ − y
d‖2 with

A =

1 x(1) (x(1))2 · · · (x(1))p−1

1 x(2) (x(2))2 · · · (x(2))p−1

...

1 x(N) (x(N))2 · · · (x(N))p−1

, y
d
=

y
(1)

y
(2)

...

y
(N)

Least squares data fitting 9.11

Example

x

f̂ (x) degree 2 (p = 3)

x

f̂ (x) degree 6

x

f̂ (x) degree 10

x

f̂ (x) degree 15

data set of 100 examples

Least squares data fitting 9.12

Piecewise-affine function

• define knot points a1 < a2 < · · · < ak on the real axis

• piecewise-affine function is continuous, and affine on each interval [ak,ak+1]

• piecewise-affine function with knot points a1, . . . , ak can be written as

f̂ (x) = θ1 + θ2x + θ3(x − a1)+ + · · · + θ2+k(x − ak)+

where u+ = max {u,0}

−3 −2 −1 0 1 2 3

0

1

2

3

x

(x + 1)+

−3 −2 −1 0 1 2 3

0

1

2

3

x

(x − 1)+

Least squares data fitting 9.13

Piecewise-affine function fitting

piecewise-affine model is in linear in the parameters θ, with basis functions

f1(x) = 1, f2(x) = x, f3(x) = (x − a1)+, . . . , fk+2(x) = (x − ak)+

Example: fit piecewise-affine function with knots a1 = −1, a2 = 1 to 100 points

−2 −1 0 1 2
x

f̂ (x)

Least squares data fitting 9.14

Generalization and validation

Generalization ability: ability of model to predict outcomes for new, unseen data

Model validation: to assess generalization ability,

• divide data in two sets: training set and test (or validation) set

• use training set to fit model

• use test set to get an idea of generalization ability

• this is also called out-of-sample validation

Over-fit model

• model with low prediction error on training set, bad generalization ability

• prediction error on training set is much smaller than on test set

Least squares data fitting 9.21

Example: polynomial fitting

0 2 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

1

Degree

R
e
la

ti
ve

R
M

S
e
rr

o
r

Train
Test

• training set is data set of 100 points used on page 9.11

• test set is a similar set of 100 points

• plot suggests using degree 6

Least squares data fitting 9.22

Over-fitting

polynomial of degree 20 on training and test set

x

f̂ (x) training set

x

f̂ (x) test set

over-fitting is evident at the left end of the interval

Least squares data fitting 9.23

Auto-regressive (AR) time series model

ẑt+1 = β1zt + · · · + βM zt−M+1, t = M,M + 1, . . .

• z1, z2, . . . is a time series

• ẑt+1 is a prediction of zt+1, made at time t

• prediction ẑt+1 is a linear function of previous M values zt, . . . , zt−M+1

• M is the memory of the model

Least squares fitting of AR model: given oberved data z1, . . . , zT , minimize

(zM+1 − ẑM+1)
2
+ (zM+2 − ẑM+2)

2
+ · · · + (zT − ẑT)

2

this is a least squares problem: minimize ‖Aβ − y
d‖2 with

A =

zM zM−1 · · · z1

zM+1 zM · · · z2
...

zT−1 zT−2 · · · zT−M

, β =

β1
β2
...

βM

, y
d
=

zM+1

zM+2
...

zT

Least squares data fitting 9.19

Example: hourly temperature at LAX

0 24 48 72 96 120

56

58

60

62

64

66

68

70

t

T
e
m

p
e
ra

tu
re

(◦
F

)

• blue line shows prediction by AR model of memory M = 8

• model was fit on time series of length T = 744 (May 1–31, 2016)

• plot shows first five days

Least squares data fitting 9.20

L. Vandenberghe ECE133A (Fall 2019)

10. Multi-objective least squares

• multi-objective least squares

• regularized data fitting

• control

• estimation and inversion

10.1

Multi-objective least squares

we have several objectives

J1 = ‖A1x − b1‖2, . . . , Jk = ‖Ak x − bk ‖2

• Ai is an mi × n matrix, bi is an mi-vector

• we seek one x that makes all k objectives small

• usually there is a trade-off: no single x minimizes all objectives simultaneously

Weighted least squares formulation: find x that minimizes

λ1‖A1x − b1‖2
+ · · · + λk ‖Ak x − bk ‖2

• coefficients λ1, . . . , λk are positive weights

• weights λi express relative importance of different objectives

• without loss of generality, we can choose λ1 = 1

Multi-objective least squares 10.2

Solution of weighted least squares

• weighted least squares is equivalent to a standard least squares problem

minimize

√
λ1A1√
λ2A2
...√
λk Ak

x −

√
λ1b1√
λ2b2
...√
λkbk

2

• solution is unique if the stacked matrix has linearly independent columns

• each matrix Ai may have linearly dependent columns (or be a wide matrix)

• it the stacked matrix has linearly independent columns, the solution is

x̂ =
(
λ1AT

1
A1 + · · · + λk AT

k Ak

)−1 (
λ1AT

1
b1 + · · · + λk AT

k bk

)

Multi-objective least squares 10.3

Example with two objectives

minimize ‖A1x − b1‖2
+ λ‖A2x − b2‖2

A1 and A2 are 10 × 5

10
−4

10
−2

10
0

10
2

10
4

−0.2

0

0.2

0.4

0.6

λ

x̂1(λ)
x̂2(λ)
x̂3(λ)
x̂4(λ)
x̂5(λ)

plot shows weighted least squares solution x̂(λ) as function of weight λ

Multi-objective least squares 10.4

Example with two objectives

minimize ‖A1x − b1‖2
+ λ‖A2x − b2‖2

10
−4

10
−2

10
0

10
2

10
4

4

6

8

10

12

14

λ

J1(λ)
J2(λ)

6 8 10 12 14 16

4

6

8

10

12

14

λ = 0.1

λ = 1

λ = 10

J1(λ)
J 2
(λ
)

• left figure shows J1(λ) = ‖A1 x̂(λ) − b1‖2 and J2(λ) = ‖A2 x̂(λ) − b2‖2

• right figure shows optimal trade-off curve of J2(λ) versus J1(λ)

Multi-objective least squares 10.5

Outline

• multi-objective least squares

• regularized data fitting

• control

• estimation and inversion

Motivation

• consider linear-in-parameters model

f̂ (x) = θ1 f1(x) + · · · + θp fp(x)

we assume f1(x) is the constant function 1

• we fit the model f̂ (x) to examples (x(1), y(1)), . . . , (x(N), y(N))

• large coefficient θi makes model more sensitive to changes in fi(x)

• keeping θ2, . . . , θp small helps avoid over-fitting

• this leads to two objectives:

J1(θ) =
N∑

k=1

(f̂ (x(k)) − y
(k))2, J2(θ) =

p∑

j=2

θ2j

primary objective J1(θ) is sum of squares of prediction errors

Multi-objective least squares 10.6

Weighted least squares formulation

minimize J1(θ) + λJ2(θ) =
N∑

k=1

(f̂ (x(k)) − y
(k))2 + λ

p∑

j=2

θ2j

• λ is positive regularization parameter

• equivalent to least squares problem: minimize

[
A1√
λA2

]
θ −

[
y

d

0

]
2

with y
d
= (y(1), . . . , y(N)),

A1 =

1 f2(x(1)) · · · fp(x(1))
1 f2(x(2)) · · · fp(x(2))
...

1 f2(x(N)) · · · fp(x(N))

, A2 =

0 1 0 · · · 0

0 0 1 · · · 0
...

0 0 0 · · · 1

• stacked matrix has linearly independent columns (for positive λ)

• value of λ can be chosen by out-of-sample validation or cross-validation

Multi-objective least squares 10.7

Example

0 0.5 1

−1

0

1

2

3

x

Train
Test

• solid line is signal used to generate synthetic (simulated) data

• 10 blue points are used as training set; 20 red points are used as test set

• we fit a model with five parameters θ1, . . . , θ5:

f̂ (x) = θ1 +
4∑

k=1

θk+1 sin(ωk x + φk) (with given ωk , φk)

Multi-objective least squares 10.8

Result of regularized least squares fit

10
−5

10
−3

10
−1

10
1

10
3

10
5

0

0.2

0.4

0.6

0.8

1

1.2

λ

RMS error versus λ

Train
Test

10
−5

10
−3

10
−1

10
1

10
3

10
5

−2

−1

0

1

2

λ

Coefficients versus λ

θ1 θ2
θ3 θ4
θ5

• minimum test RMS error is for λ around 0.08

• increasing λ “shrinks” the coefficients θ2, . . . , θ5

• dashed lines show coefficients used to generate the data

• for λ near 0.08, estimated coefficients are close to these “true” values

Multi-objective least squares 10.9

Outline

• multi-objective least squares

• regularized data fitting

• control

• estimation and inversion

Control

y = Ax + b

• x is n-vector of actions or inputs

• y is m-vector of results or outputs

• relation between inputs and outputs is a known affine function

the goal is to choose inputs x to optimize different objectives on x and y

Multi-objective least squares 10.10

Optimal input design

Linear dynamical system

y(t) = h0u(t) + h1u(t − 1) + h2u(t − 2) + · · · + htu(0)

• output y(t) and input u(t) are scalar

• we assume input u(t) is zero for t < 0

• coefficients h0, h1, . . . are the impulse response coefficients

• output is convolution of input with impulse response

Optimal input design

• optimization variable is the input sequence x = (u(0),u(1), . . . ,u(N))

• goal is to track a desired output using a small and slowly varying input

Multi-objective least squares 10.11

Input design objectives

minimize Jt(x) + λvJv(x) + λmJm(x)

• primary objective: track desired output ydes over an interval [0,N]:

Jt(x) =
N∑

t=0

(y(t) − ydes(t))2

• secondary objectives: use a small and slowly varying input signal:

Jm(x) =
N∑

t=0

u(t)2, Jv(x) =
N−1∑

t=0

(u(t + 1) − u(t))2

Multi-objective least squares 10.12

Tracking error

Jt(x) =
N∑

t=0

(y(t) − ydes(t))2

= ‖Atx − bt‖2

with

At =

h0 0 0 · · · 0 0

h1 h0 0 · · · 0 0

h2 h1 h0 · · · 0 0
...

hN−1 hN−2 hN−3 · · · h0 0

hN hN−1 hN−2 · · · h1 h0

, bt =

ydes(0)
ydes(1)
ydes(2)
...

ydes(N − 1)
ydes(N)

Multi-objective least squares 10.13

Input variation and magnitude

Input variation

Jv(x) =
N−1∑

t=0

(u(t + 1) − u(t))2 = ‖Dx‖2

with D the N × (N + 1) matrix

D =

−1 1 0 · · · 0 0 0

0 −1 1 · · · 0 0 0
...

0 0 0 · · · −1 1 0

0 0 0 · · · 0 −1 1

Input magnitude

Jm(x) =
N∑

t=0

u(t)2 = ‖x‖2

Multi-objective least squares 10.14

Example

λv = 0,

small λm

0 100 200
−6

−4

−2

0

2

4

t

u
(t)

0 100 200

−1

0

1

t

y
(t)

larger λv

larger λm

0 100 200
−6

−4

−2

0

2

4

t

u
(t)

0 100 200

−1

0

1

t

y
(t)

Multi-objective least squares 10.15

Outline

• multi-objective least squares

• regularized data fitting

• control

• estimation and inversion

Estimation

Linear measurement model

y = Axex + v

• n-vector xex contains parameters that we want to estimate

• m-vector v is unknown measurement error or noise

• m-vector y contains measurements

• m × n matrix A relates measurements and parameters

Least squares estimate: use as estimate of xex the solution x̂ of

minimize ‖Ax − y‖2

Multi-objective least squares 10.16

Regularized estimation

add other terms to ‖Ax − y‖2 to include information about parameters

Example: Tikhonov regularization

minimize ‖Ax − y‖2
+ λ‖x‖2

• goal is to make ‖Ax − y‖ small with small x

• equivalent to solving

(AT A + λI)x = AT
y

• solution is unique (if λ > 0) even when A has linearly dependent columns

Multi-objective least squares 10.17

Signal denoising

• observed signal y is n-vector

y = xex + v

• xex is unknown signal

• v is noise

0 500 1000

0.5

1

1.5

k

y
k

Least squares denoising: find estimate x̂ by solving

minimize ‖x − y‖2
+ λ

n−1∑

i=1

(xi+1 − xi)2

goal is to find slowly varying signal x̂, close to observed signal y

Multi-objective least squares 10.18

Matrix formulation

minimize

[
I√
λD

]
x −

[
y

0

]
2

• D is (n − 1) × n finite difference matrix

D =

−1 1 0 · · · 0 0 0

0 −1 1 · · · 0 0 0
...

0 0 0 · · · −1 1 0

0 0 0 · · · 0 −1 1

• equivalent to linear equation

(I + λDT D)x = y

Multi-objective least squares 10.19

Trade-off

the two objectives ‖ x̂(λ) − y‖ and ‖Dx̂(λ)‖ for varying λ

10
−5

10
0

10
5

10
10

0

2

4

6

8

10

λ

‖ x̂(λ) − y‖
‖Dx̂(λ)‖

0 2 4 6 8 10
0

0.5

1

λ = 10
−1

λ = 10
2

λ = 10
5

‖ x̂(λ) − y‖
‖D

x̂
(λ
)‖

Multi-objective least squares 10.20

Three solutions

0 500 1000

0.5

1

1.5 λ = 10
−1

k

x̂
(λ
) k

0 500 1000

0.5

1

1.5 λ = 10
2

k

x̂
(λ
) k

• x̂(λ) → y for λ→ 0

• x̂(λ) → avg(y)1 for λ→ ∞

• λ ≈ 10
2 is good compromise

0 500 1000

0.5

1

1.5 λ = 10
5

k

x̂
(λ
) k

Multi-objective least squares 10.21

Image deblurring

y = Axex + v

• xex is unknown image, y is observed image

• A is (known) blurring matrix, v is (unknown) noise

• images are M × N , stored as MN-vectors

blurred, noisy image y deblurred image x̂
Multi-objective least squares 10.22

Least squares deblurring

minimize ‖Ax − y‖2
+ λ(‖Dvx‖2

+ ‖Dhx‖2)

• 1st term is “data fidelity” term: ensures Ax̂ ≈ y

• 2nd term penalizes differences between values at neighboring pixels

‖Dhx‖2
+ ‖Dvx‖2

=

M∑

i=1

N−1∑

j=1

(Xi,j+1 − Xi j)2 +
M−1∑

i=1

N∑

j=1

(Xi+1,j − Xi j)2

if X is the M × N image stored in the MN-vector x

Multi-objective least squares 10.23

Differencing operations in matrix notation

suppose x is the M × N image X , stored column-wise as MN-vector

x =
(
X1:M,1, X1:M,2, . . . , X1:M,N

)

• horizontal differencing: (N − 1) × N block matrix with M × M blocks

Dh =

−I I 0 · · · 0 0 0

0 −I I · · · 0 0 0
...

0 0 0 · · · 0 −I I

• vertical differencing: N × N block matrix with (M − 1) × M blocks

Dv =

D 0 · · · 0

0 D · · · 0
...

0 0 · · · D

, D =

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

0 0 0 · · · −1 1

Multi-objective least squares 10.24

Deblurred images

λ = 10
−6 λ = 10

−4

λ = 10
−2 λ = 1

Multi-objective least squares 10.25

Tomography

◮ goal is to reconstruct or estimate a function d : R2
→ R from

(possibly noisy) line integral measurements

◮ d is often (but not always) some kind of density

◮ we’ll focus on 2-D case, but it can be extended to 3-D

◮ used in medicine, manufacturing, networking, geology

◮ best known application: CAT (computer-aided tomography) scan

2

Computer Tomography (CT)

1 / 1

Discretization of d

◮ we d is constant on n pixels, numbered 1 to n

◮ represent (discretized) density function d by n-vector x

◮ xi is value of d in pixel i

◮ line integral measurement yi has form

yi =
n∑

j=1

Aijxj + vi

◮ Aij is length of line ℓi in pixel j

◮ in matrix-vector form, we have y = Ax+ v

Line integral measurements 6

Illustration

x1 x2

x6

(x0, y0)
θ

y = 1.06x16 + 0.80x17 + 0.27x12 + 1.06x13 + 1.06x14 + 0.53x15 + 0.54x10 + v

Line integral measurements 7

Example

Line integral measurements 9

Another example

Line integral measurements 11

Smoothness prior

◮ we assume that image is not too rough, as measured by (Laplacian)

‖Dvx‖
2 + ‖Dhx‖

2

– Dhx gives first order difference in horizontal direction
– Dvx gives first order difference in vertical direction

◮ roughness measure is sum of squares of first order differences

◮ it is zero only when x is constant

Least-squares reconstruction 13

Least-squares reconstruction

◮ choose x̂ to minimize

‖Ax− y‖2 + λ(‖Dvx̂‖
2 + ‖Dhx̂‖

2)

– first term is ‖v‖2, or deviation between what we observed (y) and
what we would have observed without noise (Ax)

– second term is roughness measure

◮ regularization parameter λ > 0 trades off measurement fit versus
roughness of recovered image

Least-squares reconstruction 14

Example

◮ 50× 50 pixels (n = 2500)
◮ 40 angles, 40 offsets (m = 1600 lines)
◮ 600 lines shown
◮ small measurement noise

0

1

Example 16

Reconstruction

reconstruction with λ = 10

Example 17

Reconstruction

reconstructions with λ = 10−6, 20, 230, 2600

Example 18

Varying the number of line integrals

reconstruct with m = 100, 400, 2500, 6400 lines (with λ = 10, 15, 25, 30)

Example 19

