Optimalizace

Použití lineární úlohy nejmenších čtverců (a podobných)

Tom Werner
FEL ČVUT

Mnoho aplikací úlohy

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}
$$

je v knize (zdarma ke stažení i se slajdy):

Slides on the following pages are compiled from various courses by S.Boyd and L.Vanderberghe.

Lecture 2 Linear functions and examples

- linear equations and functions
- engineering examples
- interpretations

Linear elastic structure

- x_{j} is external force applied at some node, in some fixed direction
- y_{i} is (small) deflection of some node, in some fixed direction

(provided x, y are small) we have $y \approx A x$
- A is called the compliance matrix
- $a_{i j}$ gives deflection i per unit force at j (in m / N)

Total force/torque on rigid body

- x_{j} is external force/torque applied at some point/direction/axis
- $y \in \mathbf{R}^{6}$ is resulting total force \& torque on body (y_{1}, y_{2}, y_{3} are $\mathbf{x}-, \mathbf{y}-, \mathbf{z}$ - components of total force, y_{4}, y_{5}, y_{6} are $\mathbf{x}-, \mathbf{y}-, \mathbf{z}$ - components of total torque)
- we have $y=A x$
- A depends on geometry (of applied forces and torques with respect to center of gravity CG)
- j th column gives resulting force \& torque for unit force/torque j

Linear static circuit

interconnection of resistors, linear dependent (controlled) sources, and independent sources

- x_{j} is value of independent source j
- y_{i} is some circuit variable (voltage, current)
- we have $y=A x$
- if x_{j} are currents and y_{i} are voltages, A is called the impedance or resistance matrix

Final position/velocity of mass due to applied forces

- unit mass, zero position/velocity at $t=0$, subject to force $f(t)$ for $0 \leq t \leq n$
- $f(t)=x_{j}$ for $j-1 \leq t<j, j=1, \ldots, n$
(x is the sequence of applied forces, constant in each interval)
- y_{1}, y_{2} are final position and velocity (i.e., at $t=n$)
- we have $y=A x$
- $a_{1 j}$ gives influence of applied force during $j-1 \leq t<j$ on final position
- $a_{2 j}$ gives influence of applied force during $j-1 \leq t<j$ on final velocity

Gravimeter prospecting

- $x_{j}=\rho_{j}-\rho_{\text {avg }}$ is (excess) mass density of earth in voxel j;
- y_{i} is measured gravity anomaly at location i, i.e., some component (typically vertical) of $g_{i}-g_{\text {avg }}$
- $y=A x$
- A comes from physics and geometry
- j th column of A shows sensor readings caused by unit density anomaly at voxel j
- i th row of A shows sensitivity pattern of sensor i

Thermal system

- x_{j} is power of j th heating element or heat source
- y_{i} is change in steady-state temperature at location i
- thermal transport via conduction
- $y=A x$
- $a_{i j}$ gives influence of heater j at location $i\left(\right.$ in ${ }^{\circ} \mathrm{C} / \mathrm{W}$)
- j th column of A gives pattern of steady-state temperature rise due to 1 W at heater j
- i th row shows how heaters affect location i

Illumination with multiple lamps

- n lamps illuminating m (small, flat) patches, no shadows
- x_{j} is power of j th lamp; y_{i} is illumination level of patch i
- $y=A x$, where $a_{i j}=r_{i j}^{-2} \max \left\{\cos \theta_{i j}, 0\right\}$
$\left(\cos \theta_{i j}<0\right.$ means patch i is shaded from lamp j)
- j th column of A shows illumination pattern from lamp j

Broad categories of applications

linear model or function $y=A x$
some broad categories of applications:

- estimation or inversion
- control or design
- mapping or transformation
(this list is not exclusive; can have combinations . . .)

Estimation or inversion

$$
y=A x
$$

- y_{i} is i th measurement or sensor reading (which we know)
- x_{j} is j th parameter to be estimated or determined
- $a_{i j}$ is sensitivity of i th sensor to j th parameter
sample problems:
- find x, given y
- find all x 's that result in y (i.e., all x 's consistent with measurements)
- if there is no x such that $y=A x$, find x s.t. $y \approx A x$ (i.e., if the sensor readings are inconsistent, find x which is almost consistent)

Control or design

$$
y=A x
$$

- x is vector of design parameters or inputs (which we can choose)
- y is vector of results, or outcomes
- A describes how input choices affect results
sample problems:
- find x so that $y=y_{\text {des }}$
- find all x 's that result in $y=y_{\text {des }}$ (i.e., find all designs that meet specifications)
- among x 's that satisfy $y=y_{\text {des }}$, find a small one (i.e., find a small or efficient x that meets specifications)

Mapping or transformation

- x is mapped or transformed to y by linear function $y=A x$
sample problems:
- determine if there is an x that maps to a given y
- (if possible) find an x that maps to y
- find all x 's that map to a given y
- if there is only one x that maps to y, find it (i.e., decode or undo the mapping)

Example: illumination

- n lamps at given positions above an area divided in m regions
- $A_{i j}$ is illumination in region i if lamp j is on with power 1 and other lamps are off
- x_{j} is power of lamp j
- $(A x)_{i}$ is illumination level at region i
- b_{i} is target illumination level at region i

Example: $m=25^{2}, n=10$; figure shows position and height of each lamp

Example: illumination

- left: illumination pattern for equal lamp powers $(x=\mathbf{1})$
- right: illumination pattern for least squares solution \hat{x}, with $b=\mathbf{1}$

Linear-in-parameters model

we choose the model $\hat{f}(x)$ from a family of models

$$
\hat{f}(x)=\theta_{1} f_{1}(x)+\theta_{2} f_{2}(x)+\cdots+\theta_{p} f_{p}(x)
$$

- the functions f_{i} are scalar valued basis functions (chosen by us)
- the basis functions often include a constant function (typically, $f_{1}(x)=1$)
- the coefficients $\theta_{1}, \ldots, \theta_{p}$ are the model parameters
- the model $\hat{f}(x)$ is linear in the parameters θ_{i}
- if $f_{1}(x)=1$, this can be interpreted as a regression model

$$
\hat{y}=\beta^{T} \tilde{x}+v
$$

with parameters $v=\theta_{1}, \beta=\theta_{2 ; p}$ and new features \tilde{x} generated from x :

$$
\tilde{x}_{1}=f_{2}(x), \quad \ldots, \quad \tilde{x}_{p}=f_{p}(x)
$$

Least squares model fitting

- fit linear-in-parameters model to data set $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(N)}, y^{(N)}\right)$
- residual for data sample i is

$$
r^{(i)}=y^{(i)}-\hat{f}\left(x^{(i)}\right)=y^{(i)}-\theta_{1} f_{1}\left(x^{(i)}\right)-\cdots-\theta_{p} f_{p}\left(x^{(i)}\right)
$$

- least squares model fitting: choose parameters θ by minimizing MSE

$$
\frac{1}{N}\left(\left(r^{(1)}\right)^{2}+\left(r^{(2)}\right)^{2}+\cdots+\left(r^{(N)}\right)^{2}\right)
$$

- this is a least squares problem: minimize $\left\|A \theta-y^{\mathrm{d}}\right\|^{2}$ with

$$
A=\left[\begin{array}{ccc}
f_{1}\left(x^{(1)}\right) & \cdots & f_{p}\left(x^{(1)}\right) \\
f_{1}\left(x^{(2)}\right) & \cdots & f_{p}\left(x^{(2)}\right) \\
\vdots & & \vdots \\
f_{1}\left(x^{(N)}\right) & \cdots & f_{p}\left(x^{(N)}\right)
\end{array}\right], \quad \theta=\left[\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\vdots \\
\theta_{p}
\end{array}\right], \quad y^{\mathrm{d}}=\left[\begin{array}{c}
y^{(1)} \\
y^{(2)} \\
\vdots \\
y^{(N)}
\end{array}\right]
$$

Example: polynomial approximation

$$
\hat{f}(x)=\theta_{1}+\theta_{2} x+\theta_{3} x^{2}+\cdots+\theta_{p} x^{p-1}
$$

- a linear-in-parameters model with basis functions $1, x, \ldots, x^{p-1}$
- least squares model fitting: choose parameters θ by minimizing MSE

$$
\frac{1}{N}\left(\left(y^{(1)}-\hat{f}\left(x^{(1)}\right)\right)^{2}+\left(y^{(2)}-\hat{f}\left(x^{(2)}\right)\right)^{2}+\cdots+\left(y^{(N)}-\hat{f}\left(x^{(N)}\right)\right)^{2}\right)
$$

- in matrix notation: minimize $\left\|A \theta-y^{\mathrm{d}}\right\|^{2}$ with

$$
A=\left[\begin{array}{ccccc}
1 & x^{(1)} & \left(x^{(1)}\right)^{2} & \cdots & \left(x^{(1)}\right)^{p-1} \\
1 & x^{(2)} & \left(x^{(2)}\right)^{2} & \cdots & \left(x^{(2)}\right)^{p-1} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x^{(N)} & \left(x^{(N)}\right)^{2} & \cdots & \left(x^{(N)}\right)^{p-1}
\end{array}\right], \quad y^{\mathrm{d}}=\left[\begin{array}{c}
y^{(1)} \\
y^{(2)} \\
\vdots \\
y^{(N)}
\end{array}\right]
$$

Example

$$
\hat{f}(x)
$$

$$
\text { degree } 15
$$

data set of 100 examples

Piecewise-affine function

- define knot points $a_{1}<a_{2}<\cdots<a_{k}$ on the real axis
- piecewise-affine function is continuous, and affine on each interval $\left[a_{k}, a_{k+1}\right]$
- piecewise-affine function with knot points a_{1}, \ldots, a_{k} can be written as

$$
\hat{f}(x)=\theta_{1}+\theta_{2} x+\theta_{3}\left(x-a_{1}\right)_{+}+\cdots+\theta_{2+k}\left(x-a_{k}\right)_{+}
$$

where $u_{+}=\max \{u, 0\}$

Piecewise-affine function fitting

piecewise-affine model is in linear in the parameters θ, with basis functions

$$
f_{1}(x)=1, \quad f_{2}(x)=x, \quad f_{3}(x)=\left(x-a_{1}\right)_{+}, \quad \ldots, \quad f_{k+2}(x)=\left(x-a_{k}\right)_{+}
$$

Example: fit piecewise-affine function with knots $a_{1}=-1, a_{2}=1$ to 100 points

Generalization and validation

Generalization ability: ability of model to predict outcomes for new, unseen data

Model validation: to assess generalization ability,

- divide data in two sets: training set and test (or validation) set
- use training set to fit model
- use test set to get an idea of generalization ability
- this is also called out-of-sample validation

Over-fit model

- model with low prediction error on training set, bad generalization ability
- prediction error on training set is much smaller than on test set

Example: polynomial fitting

- training set is data set of 100 points used on page 9.11
- test set is a similar set of 100 points
- plot suggests using degree 6

Over-fitting

polynomial of degree 20 on training and test set

over-fitting is evident at the left end of the interval

Auto-regressive (AR) time series model

$$
\hat{z}_{t+1}=\beta_{1} z_{t}+\cdots+\beta_{M} z_{t-M+1}, \quad t=M, M+1, \ldots
$$

- z_{1}, z_{2}, \ldots is a time series
- \hat{z}_{t+1} is a prediction of z_{t+1}, made at time t
- prediction \hat{z}_{t+1} is a linear function of previous M values z_{t}, \ldots, z_{t-M+1}
- M is the memory of the model

Least squares fitting of AR model: given oberved data z_{1}, \ldots, z_{T}, minimize

$$
\left(z_{M+1}-\hat{z}_{M+1}\right)^{2}+\left(z_{M+2}-\hat{z}_{M+2}\right)^{2}+\cdots+\left(z_{T}-\hat{z}_{T}\right)^{2}
$$

this is a least squares problem: minimize $\left\|A \beta-y^{\mathrm{d}}\right\|^{2}$ with

$$
A=\left[\begin{array}{cccc}
z_{M} & z_{M-1} & \cdots & z_{1} \\
z_{M+1} & z_{M} & \cdots & z_{2} \\
\vdots & \vdots & & \vdots \\
z_{T-1} & z_{T-2} & \cdots & z_{T-M}
\end{array}\right], \quad \beta=\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{M}
\end{array}\right], \quad y^{\mathrm{d}}=\left[\begin{array}{c}
z_{M+1} \\
z_{M+2} \\
\vdots \\
z_{T}
\end{array}\right]
$$

Example: hourly temperature at LAX

- blue line shows prediction by AR model of memory $M=8$
- model was fit on time series of length $T=744$ (May 1-31, 2016)
- plot shows first five days

10. Multi-objective least squares

- multi-objective least squares
- regularized data fitting
- control
- estimation and inversion

Multi-objective least squares

we have several objectives

$$
J_{1}=\left\|A_{1} x-b_{1}\right\|^{2}, \quad \ldots, \quad J_{k}=\left\|A_{k} x-b_{k}\right\|^{2}
$$

- A_{i} is an $m_{i} \times n$ matrix, b_{i} is an m_{i}-vector
- we seek one x that makes all k objectives small
- usually there is a trade-off: no single x minimizes all objectives simultaneously

Weighted least squares formulation: find x that minimizes

$$
\lambda_{1}\left\|A_{1} x-b_{1}\right\|^{2}+\cdots+\lambda_{k}\left\|A_{k} x-b_{k}\right\|^{2}
$$

- coefficients $\lambda_{1}, \ldots, \lambda_{k}$ are positive weights
- weights λ_{i} express relative importance of different objectives
- without loss of generality, we can choose $\lambda_{1}=1$

Solution of weighted least squares

- weighted least squares is equivalent to a standard least squares problem

$$
\text { minimize }\left\|\left[\begin{array}{c}
\sqrt{\lambda_{1}} A_{1} \\
\sqrt{\lambda_{2}} A_{2} \\
\vdots \\
\sqrt{\lambda_{k}} A_{k}
\end{array}\right] x-\left[\begin{array}{c}
\sqrt{\lambda_{1}} b_{1} \\
\sqrt{\lambda_{2}} b_{2} \\
\vdots \\
\sqrt{\lambda_{k}} b_{k}
\end{array}\right]\right\|^{2}
$$

- solution is unique if the stacked matrix has linearly independent columns
- each matrix A_{i} may have linearly dependent columns (or be a wide matrix)
- it the stacked matrix has linearly independent columns, the solution is

$$
\hat{x}=\left(\lambda_{1} A_{1}^{T} A_{1}+\cdots+\lambda_{k} A_{k}^{T} A_{k}\right)^{-1}\left(\lambda_{1} A_{1}^{T} b_{1}+\cdots+\lambda_{k} A_{k}^{T} b_{k}\right)
$$

Example with two objectives

$$
\operatorname{minimize}\left\|A_{1} x-b_{1}\right\|^{2}+\lambda\left\|A_{2} x-b_{2}\right\|^{2}
$$

A_{1} and A_{2} are 10×5

plot shows weighted least squares solution $\hat{x}(\lambda)$ as function of weight λ

Example with two objectives

minimize $\left\|A_{1} x-b_{1}\right\|^{2}+\lambda\left\|A_{2} x-b_{2}\right\|^{2}$

- left figure shows $J_{1}(\lambda)=\left\|A_{1} \hat{x}(\lambda)-b_{1}\right\|^{2}$ and $J_{2}(\lambda)=\left\|A_{2} \hat{x}(\lambda)-b_{2}\right\|^{2}$
- right figure shows optimal trade-off curve of $J_{2}(\lambda)$ versus $J_{1}(\lambda)$

Outline

- multi-objective least squares
- regularized data fitting
- control
- estimation and inversion

Motivation

- consider linear-in-parameters model

$$
\hat{f}(x)=\theta_{1} f_{1}(x)+\cdots+\theta_{p} f_{p}(x)
$$

we assume $f_{1}(x)$ is the constant function 1

- we fit the model $\hat{f}(x)$ to examples $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(N)}, y^{(N)}\right)$
- large coefficient θ_{i} makes model more sensitive to changes in $f_{i}(x)$
- keeping $\theta_{2}, \ldots, \theta_{p}$ small helps avoid over-fitting
- this leads to two objectives:

$$
J_{1}(\theta)=\sum_{k=1}^{N}\left(\hat{f}\left(x^{(k)}\right)-y^{(k)}\right)^{2}, \quad J_{2}(\theta)=\sum_{j=2}^{p} \theta_{j}^{2}
$$

primary objective $J_{1}(\theta)$ is sum of squares of prediction errors

Weighted least squares formulation

$$
\text { minimize } \quad J_{1}(\theta)+\lambda J_{2}(\theta)=\sum_{k=1}^{N}\left(\hat{f}\left(x^{(k)}\right)-y^{(k)}\right)^{2}+\lambda \sum_{j=2}^{p} \theta_{j}^{2}
$$

- λ is positive regularization parameter
- equivalent to least squares problem: minimize

$$
\begin{gathered}
\left\|\left[\begin{array}{c}
A_{1} \\
\sqrt{\lambda} A_{2}
\end{array}\right] \theta-\left[\begin{array}{c}
y^{\mathrm{d}} \\
0
\end{array}\right]\right\|^{2} \\
\text { with } y^{\mathrm{d}}=\left(y^{(1)}, \ldots, y^{(N)}\right) \text {, } \\
A_{1}=\left[\begin{array}{cccc}
1 & f_{2}\left(x^{(1)}\right) & \cdots & f_{p}\left(x^{(1)}\right) \\
1 & f_{2}\left(x^{(2)}\right) & \cdots & f_{p}\left(x^{(2)}\right) \\
\vdots & \vdots & & \vdots \\
1 & f_{2}\left(x^{(N)}\right) & \cdots & f_{p}\left(x^{(N)}\right)
\end{array}\right], \quad A_{2}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]
\end{gathered}
$$

- stacked matrix has linearly independent columns (for positive λ)
- value of λ can be chosen by out-of-sample validation or cross-validation

Example

- solid line is signal used to generate synthetic (simulated) data
- 10 blue points are used as training set; 20 red points are used as test set
- we fit a model with five parameters $\theta_{1}, \ldots, \theta_{5}$:

$$
\left.\hat{f}(x)=\theta_{1}+\sum_{k=1}^{4} \theta_{k+1} \sin \left(\omega_{k} x+\phi_{k}\right) \quad \text { (with given } \omega_{k}, \phi_{k}\right)
$$

Result of regularized least squares fit

- minimum test RMS error is for λ around 0.08
- increasing λ "shrinks" the coefficients $\theta_{2}, \ldots, \theta_{5}$
- dashed lines show coefficients used to generate the data
- for λ near 0.08, estimated coefficients are close to these "true" values

Outline

- multi-objective least squares
- regularized data fitting
- control
- estimation and inversion

Control

$$
y=A x+b
$$

- x is n-vector of actions or inputs
- y is m-vector of results or outputs
- relation between inputs and outputs is a known affine function
the goal is to choose inputs x to optimize different objectives on x and y

Optimal input design

Linear dynamical system

$$
y(t)=h_{0} u(t)+h_{1} u(t-1)+h_{2} u(t-2)+\cdots+h_{t} u(0)
$$

- output $y(t)$ and input $u(t)$ are scalar
- we assume input $u(t)$ is zero for $t<0$
- coefficients h_{0}, h_{1}, \ldots are the impulse response coefficients
- output is convolution of input with impulse response

Optimal input design

- optimization variable is the input sequence $x=(u(0), u(1), \ldots, u(N))$
- goal is to track a desired output using a small and slowly varying input

Input design objectives

$$
\text { minimize } J_{\mathrm{t}}(x)+\lambda_{\mathrm{v}} J_{\mathrm{v}}(x)+\lambda_{\mathrm{m}} J_{\mathrm{m}}(x)
$$

- primary objective: track desired output $y_{\text {des }}$ over an interval $[0, N]$:

$$
J_{\mathrm{t}}(x)=\sum_{t=0}^{N}\left(y(t)-y_{\mathrm{des}}(t)\right)^{2}
$$

- secondary objectives: use a small and slowly varying input signal:

$$
J_{\mathrm{m}}(x)=\sum_{t=0}^{N} u(t)^{2}, \quad J_{\mathrm{v}}(x)=\sum_{t=0}^{N-1}(u(t+1)-u(t))^{2}
$$

Tracking error

$$
\begin{aligned}
J_{\mathrm{t}}(x) & =\sum_{t=0}^{N}\left(y(t)-y_{\mathrm{des}}(t)\right)^{2} \\
& =\left\|A_{\mathrm{t}} x-b_{\mathrm{t}}\right\|^{2}
\end{aligned}
$$

with

$$
A_{\mathrm{t}}=\left[\begin{array}{cccccc}
h_{0} & 0 & 0 & \cdots & 0 & 0 \\
h_{1} & h_{0} & 0 & \cdots & 0 & 0 \\
h_{2} & h_{1} & h_{0} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
h_{N-1} & h_{N-2} & h_{N-3} & \cdots & h_{0} & 0 \\
h_{N} & h_{N-1} & h_{N-2} & \cdots & h_{1} & h_{0}
\end{array}\right], \quad b_{\mathrm{t}}=\left[\begin{array}{c}
y_{\operatorname{des}}(0) \\
y_{\operatorname{des}}(1) \\
y_{\operatorname{des}}(2) \\
\vdots \\
y_{\operatorname{des}}(N-1) \\
y_{\operatorname{des}}(N)
\end{array}\right]
$$

Input variation and magnitude

Input variation

$$
J_{\mathrm{V}}(x)=\sum_{t=0}^{N-1}(u(t+1)-u(t))^{2}=\|D x\|^{2}
$$

with D the $N \times(N+1)$ matrix

$$
D=\left[\begin{array}{rrrlrrr}
-1 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & -1 & 1 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -1 & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & -1 & 1
\end{array}\right]
$$

Input magnitude

$$
J_{\mathrm{m}}(x)=\sum_{t=0}^{N} u(t)^{2}=\|x\|^{2}
$$

Example

Outline

- multi-objective least squares
- regularized data fitting
- control
- estimation and inversion

Estimation

Linear measurement model

$$
y=A x_{\mathrm{ex}}+v
$$

- n-vector $x_{\text {ex }}$ contains parameters that we want to estimate
- m-vector v is unknown measurement error or noise
- m-vector y contains measurements
- $m \times n$ matrix A relates measurements and parameters

Least squares estimate: use as estimate of x_{ex} the solution \hat{x} of

$$
\text { minimize }\|A x-y\|^{2}
$$

Regularized estimation

add other terms to $\|A x-y\|^{2}$ to include information about parameters

Example: Tikhonov regularization

$$
\text { minimize }\|A x-y\|^{2}+\lambda\|x\|^{2}
$$

- goal is to make $\|A x-y\|$ small with small x
- equivalent to solving

$$
\left(A^{T} A+\lambda I\right) x=A^{T} y
$$

- solution is unique (if $\lambda>0$) even when A has linearly dependent columns

Signal denoising

- observed signal y is n-vector

$$
y=x_{\mathrm{ex}}+v
$$

- $x_{\text {ex }}$ is unknown signal
- v is noise

Least squares denoising: find estimate \hat{x} by solving

$$
\text { minimize }\|x-y\|^{2}+\lambda \sum_{i=1}^{n-1}\left(x_{i+1}-x_{i}\right)^{2}
$$

goal is to find slowly varying signal \hat{x}, close to observed signal y

Matrix formulation

$$
\text { minimize }\left\|\left[\begin{array}{c}
I \\
\sqrt{\lambda} D
\end{array}\right] x-\left[\begin{array}{l}
y \\
0
\end{array}\right]\right\|^{2}
$$

- D is $(n-1) \times n$ finite difference matrix

$$
D=\left[\begin{array}{rrrlrrr}
-1 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & -1 & 1 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -1 & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & -1 & 1
\end{array}\right]
$$

- equivalent to linear equation

$$
\left(I+\lambda D^{T} D\right) x=y
$$

Trade-off

the two objectives $\|\hat{x}(\lambda)-y\|$ and $\|D \hat{x}(\lambda)\|$ for varying λ

Three solutions

Image deblurring

$$
y=A x_{\mathrm{ex}}+v
$$

- $x_{\text {ex }}$ is unknown image, y is observed image
- A is (known) blurring matrix, v is (unknown) noise
- images are $M \times N$, stored as $M N$-vectors

blurred, noisy image y

deblurred image \hat{x}

Least squares deblurring

$$
\text { minimize }\|A x-y\|^{2}+\lambda\left(\left\|D_{\mathrm{v}} x\right\|^{2}+\left\|D_{\mathrm{h}} x\right\|^{2}\right)
$$

- 1st term is "data fidelity" term: ensures $A \hat{x} \approx y$
- 2nd term penalizes differences between values at neighboring pixels

$$
\left\|D_{\mathrm{h}} x\right\|^{2}+\left\|D_{\mathrm{v}} x\right\|^{2}=\sum_{i=1}^{M} \sum_{j=1}^{N-1}\left(X_{i, j+1}-X_{i j}\right)^{2}+\sum_{i=1}^{M-1} \sum_{j=1}^{N}\left(X_{i+1, j}-X_{i j}\right)^{2}
$$

if X is the $M \times N$ image stored in the $M N$-vector x

Differencing operations in matrix notation

suppose x is the $M \times N$ image X, stored column-wise as $M N$-vector

$$
x=\left(X_{1: M, 1}, X_{1: M, 2}, \ldots, X_{1: M, N}\right)
$$

- horizontal differencing: $(N-1) \times N$ block matrix with $M \times M$ blocks

$$
D_{\mathrm{h}}=\left[\begin{array}{ccccccc}
-I & I & 0 & \cdots & 0 & 0 & 0 \\
0 & -I & I & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & -I & I
\end{array}\right]
$$

- vertical differencing: $N \times N$ block matrix with $(M-1) \times M$ blocks

$$
D_{\mathrm{v}}=\left[\begin{array}{cccc}
D & 0 & \cdots & 0 \\
0 & D & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & D
\end{array}\right], \quad D=\left[\begin{array}{cccccc}
-1 & 1 & 0 & \cdots & 0 & 0 \\
0 & -1 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -1 & 1
\end{array}\right]
$$

Deblurred images

$$
\lambda=10^{-2}
$$

$$
\lambda=1
$$

Tomography

- goal is to reconstruct or estimate a function $d: \mathbf{R}^{2} \rightarrow \mathbf{R}$ from (possibly noisy) line integral measurements
- d is often (but not always) some kind of density
- we'll focus on 2-D case, but it can be extended to 3-D
- used in medicine, manufacturing, networking, geology
- best known application: CAT (computer-aided tomography) scan

Computer Tomography (CT)

Discretization of d

- we d is constant on n pixels, numbered 1 to n
- represent (discretized) density function d by n-vector x
- x_{i} is value of d in pixel i
- line integral measurement y_{i} has form

$$
y_{i}=\sum_{j=1}^{n} A_{i j} x_{j}+v_{i}
$$

- $A_{i j}$ is length of line ℓ_{i} in pixel j
- in matrix-vector form, we have $y=A x+v$

Illustration

$$
y=1.06 x_{16}+0.80 x_{17}+0.27 x_{12}+1.06 x_{13}+1.06 x_{14}+0.53 x_{15}+0.54 x_{10}+v
$$

Example

Another example

Smoothness prior

- we assume that image is not too rough, as measured by (Laplacian)

$$
\left\|D_{\mathrm{v}} x\right\|^{2}+\left\|D_{\mathrm{h}} x\right\|^{2}
$$

- $D_{h} x$ gives first order difference in horizontal direction
- $D_{v} x$ gives first order difference in vertical direction
- roughness measure is sum of squares of first order differences
- it is zero only when x is constant

Least-squares reconstruction

- choose \hat{x} to minimize

$$
\|A x-y\|^{2}+\lambda\left(\left\|D_{\mathrm{v}} \hat{x}\right\|^{2}+\left\|D_{\mathrm{h}} \hat{x}\right\|^{2}\right)
$$

- first term is $\|v\|^{2}$, or deviation between what we observed (y) and what we would have observed without noise $(A x)$
- second term is roughness measure
- regularization parameter $\lambda>0$ trades off measurement fit versus roughness of recovered image

Example

- 50×50 pixels ($n=2500$)
- 40 angles, 40 offsets ($m=1600$ lines)
- 600 lines shown
- small measurement noise

Reconstruction

reconstruction with $\lambda=10$

Reconstruction

reconstructions with $\lambda=10^{-6}, 20,230,2600$

Varying the number of line integrals

reconstruct with $m=100,400,2500,6400$ lines (with $\lambda=10,15,25,30$)

