Lecture 13: Bonuses - Data Visualization and Management B0B17MTB, BE0B17MTB - MATLAB

Miloslav Čapek, Viktor Adler, Vít Losenický, et al.
Department of Electromagnetic Field
Czech Technical University in Prague
Czech Republic
matlab@fel.cvut.cz
December 5, 2022
Winter semester 2022/23

Outline

1. Graphs in MATLAB
2. Export of Graphics
3. Workflow with MATLAB2TikZ
4. Making Graphs Even Better...
5. Typesetting Recommendations
6. Recommended Tools and

Resources

A Bit of History

Attempts to visualize the structure of data are old...

Macrobius' Commentary on Cicero's Somnium Scipionis, the 10th century. Considered as the earliest graphical display.

A Bit of History

\ldots and improved in time.

Commercial and Political Atlas, W. Playfair, 1786.

Data Visualization

- Do you have data you want to visualize?

Data Visualization

- Do you have data you want to visualize?
- Start thinking of a way to present them properly!
- What is the main information to be communicated?
- Not all data have to be visualized (consider to use table or text description).
- Details will be provided later.

Data Visualization

- Do you have data you want to visualize?
- Start thinking of a way to present them properly!
- What is the main information to be communicated?
- Not all data have to be visualized (consider to use table or text description).
- Details will be provided later.

1. Calculate or upload the data you want to depict, save the generating scripts for later use.

Data Visualization

- Do you have data you want to visualize?
- Start thinking of a way to present them properly!
- What is the main information to be communicated?
- Not all data have to be visualized (consider to use table or text description).
- Details will be provided later.

1. Calculate or upload the data you want to depict, save the generating scripts for later use.
2. Think of how to present your data in the best form, save the plotting file.

Data Visualization

- Do you have data you want to visualize?
- Start thinking of a way to present them properly!
- What is the main information to be communicated?
- Not all data have to be visualized (consider to use table or text description).
- Details will be provided later.

1. Calculate or upload the data you want to depict, save the generating scripts for later use.
2. Think of how to present your data in the best form, save the plotting file.
3. Do not be afraid to reuse what you have done before. Use Google whenever you experience any troubles.

Data Visualization

- Do you have data you want to visualize?
- Start thinking of a way to present them properly!
- What is the main information to be communicated?
- Not all data have to be visualized (consider to use table or text description).
- Details will be provided later.

1. Calculate or upload the data you want to depict, save the generating scripts for later use.
2. Think of how to present your data in the best form, save the plotting file.
3. Do not be afraid to reuse what you have done before. Use Google whenever you experience any troubles.
4. Save or export the figure (EPS, PDF, PNG, MATLAB2TikZ).

Data Visualization

- Do you have data you want to visualize?
- Start thinking of a way to present them properly!
- What is the main information to be communicated?
- Not all data have to be visualized (consider to use table or text description).
- Details will be provided later.

1. Calculate or upload the data you want to depict, save the generating scripts for later use.
2. Think of how to present your data in the best form, save the plotting file.
3. Do not be afraid to reuse what you have done before. Use Google whenever you experience any troubles.
4. Save or export the figure (EPS, PDF, PNG, MATLAB2TikZ).
5. Archive the particular generating script (MATLAB .m), the particular data sets (.tsv, .txt), and the figure itself (.tex).

Data Preparation in MATLAB

Many ways how to get your data in:

- Upload them with Wizard (uiimport function, Import Data).
- Drag file and drop it to MATLAB Workspace window.
- You have already mat file, use load('myFile.mat');
- Load data with dedicated function, e.g., for Excel:

Data = xlsread('MTB_L10_Excel.xlsx', 'ImportFromExcel', 'A1:B4')

- Use MATLAB to calculate what you need and generate data directly.

Data Preparation in MATLAB

Many ways how to get your data in:

- Upload them with Wizard (uiimport function, Import Data).
- Drag file and drop it to MATLAB Workspace window.
- You have already mat file, use load('myFile.mat');
- Load data with dedicated function, e.g., for Excel:

Data = xlsread('MTB_L10_Excel.xlsx', 'ImportFromExcel', 'A1:B4')

- Use MATLAB to calculate what you need and generate data directly.

Process the data to their final form:

- Normalization.
- Averages, etc.

Graph Overview (to get one: MatLAB \rightarrow Plots \rightarrow Catalog)

Components of a Graph

Elements to take care of:

- traces (lines),
- markers,
- ticks,
- axes,
- labels,
- grid and box,
- legend,
- limits,
- caption.

Components of a Graph

All elements have various attributes:

- color,
- size,
- opacity,
- axes,
- labels,
- grid and box,
- legend,
- limits,
- caption.

Elements to take care of:

- traces (lines),
- markers,
- ticks,
font size,
font name,
- typeface,
- font size,
- font nam
- typeface,
- ...

Components of a Graph - Example

Fig. 1: Functions $\sin (n x) \exp (-0.3 x)$.

Components of a Graph - Example

Fig. 1: Functions $\sin (n x) \exp (-0.3 x)$. caption

Adjusting MATLAB Graph

- To realize what are the properties: properties (obj) or get (obj) (object has to exists).
- obj. + TAB to use whispering mode.


```
x = 0:0.01:10;
fx = sin(x);
fg = figure('color', 'w');
ax = axes('parent', fg);
tr1 = plot(x, fx);
tr1.Color = [0.9 0.2 0.1];
ax.YGrid = true;
ax.YTick = -1:0.5:1;
ax.GridColor = [0 0 0];
ax.XLabel.String = '$x$';
ax.XLabel.Interpreter = 'LaTeX';
ax.YLabel.String = '$f(x) $';
ax.YLabel.Interpreter = 'LaTeX';
ax.FontSize = 14;
```


Saving Figure in MATLAB

To save a figure, either use savefig(figHndl, 'myFigure') or click on an GUI icon (diskette).

```
% A figure:
fig = figure;
ax = axes('parent', fig);
ln = plot(rand(10) - 1/2);
ax.FontSize = 14;
%% To save figure (or use GUI):
savefig(fig, 'myFigure.fig');
%% To open figure (or use GUI) :
openfig('myFigure.fig');
```

- Some features from newer versions of MATLAB may not be supported when opened in older MATLAB release.

Export to JPG/PNG

EPS and PDF Export

Graph Preparation in Adobe Illustrator/Corel Draw

- Both Adobe and Corel offer great tools for vectors graphics.
- While the quality of outputs is excellent, it is harder to unify and automatize.

Graph Preparation in Adobe Illustrator/Corel Draw

- Both Adobe and Corel offer great tools for vectors graphics.
- While the quality of outputs is excellent, it is harder to unify and automatize.

There is plethora of other highly specialized software:

- programming-based (matplotlib, GNUplot),
- 3D-graphs and schematics (Asymptote),
- for statistics (R),
- professional 3D and rendering (Blender, 3D Studio Max).

MATLAB2TikZ

Decouple SW for Data Preparation and SW for Visualization

Default graph depicted in MATLAB.

Graphics prepared in $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}+$ PGFPlots+TikZ.

Where to Start: Useful Galleries

PGFPlots Gallery

The following graphics have been generated with the LaTeX Packages PGEPlots and PGFPlotsTable.
They have been extracted from the reference manuals. PGFPlots Home

Almost impossible to start from scratch. Even skilled users start from existing graphics which they adapt (PGFPlots Gallery here).

Use Google, the community is huge and friendly. Ask for help or use someone's code snippets ($\mathrm{Ti} k \mathrm{Z}$ and PGF examples here).

Ugly \times Fancy Graphs

Clarity, simplicity, temperance.

Ugly \times Fancy Graphs

Clarity, simplicity, temperance.

A bad figure almost in every aspect (anonymous authors).

A better figure. Still not perfect (the author of the talk).

Imperfection is Common, Minimize It!

Analysis of one volume of Science journal

W. Cleveland ${ }^{a}$ analyzed vol. 207 of Science journal (1980);

- 249 articles (67% containing graphs),
- 377 graphs in total.

[^0]
Imperfection is Common, Minimize It!

Analysis of one volume of Science journal

W. Cleveland ${ }^{a}$ analyzed vol. 207 of Science journal (1980);

- 249 articles (67% containing graphs),
- 377 graphs in total.

He found that 30% of all graphs had at least one of the following types:

1. Explanation (15.4%) - Something on the graph was not explained.
2. Discrimination (10.10%) - Items on the graph could not be easily distinguished due to the design or size of the graph.
3. Construction (6.4\%) - A mistake was made in the construction of the graph (tick marks incorrectly spaced, mislabeling, etc.).
4. Degraded Image (6.4\%) - Some aspects of the graph was missing or partially missing due to poor reproduction.
[^1]
Rules to Remember ${ }^{1}$

OPEN O ACCESS $^{\text {Freely avallable online }}$
Editorial

Ten Simple Rules for Better Figures

Nicolas P. Rougier ${ }^{1,2,3_{*}}$, Michael Droettboom ${ }^{4}$, Philip E. Bourne ${ }^{5}$
1 INRIA Bordeaux Sud-Ouest, Talence, France, 2 La BRI, UMR 5800 CNRS, Talence, France, 3 Institute of Neurodegenerative Diseases, UMR 5293 CNPS, Bordeaux, France,
4 Space Telescope Sdience Institute, Baltimore, Maryland, United States of America, $\mathbf{5}$ Office of the Director, The National Institutes of Health, Bethesda, Maryland, United States of America

1. Know Your Audience
2. Identify Your Message
3. Adapt the Figure to the Support Medium
4. Captions Are Not Optional
5. Do Not Trust the Defaults

6 Use Color Effectively
6 Do Not Mislead the Reader
6 Avoid "Chartjunk"
6 Message Trumps Beauty
6 Get the Right Tool
${ }^{1}$ N. P. Rougier, M. Droettboom, and P. E. Bourne: Ten Simple Rules for Better Figures, PLOS Computational Biology, vol. 10, pp. 1-7, 2014. (here)

Organization of Figures

- Figures should be first refereed to in the text.
- Figures should appear in the order of their numbers in the text.
- Figures should stay within the page margins.
- Axes need a label with units.
- Figures should be legible (font size comparable with font size of text in the body).
- When referring a figure, use "Figure 1" or "Fig. 1", i.e., capitalize "F".
- Good if a reference is taken as a part of the sentence:
- "As depicted in "Figure 1". .."
- "Results suggest that..., see Fig. 1."

Variables and Units

$$
f_{0}=\left\{f_{\text {quantity }}\right\}\left[f_{\text {unit }}\right]=12345(67) \mathrm{Hz}
$$

Variables and Units

$$
f_{0}=\left\{f_{\text {quantity }}\right\}\left[f_{\text {unit }}\right]=12345(67) \mathrm{Hz}
$$

- Quantity always in italic.

Variables and Units

$$
f_{0}=\left\{f_{\text {quantity }}\right\}\left[f_{\text {unit }}\right]=12345(67) \mathrm{Hz}
$$

- Quantity always in italic.
- Note that $12345 \pm 67 \mathrm{~Hz}$ is incorrect from mathematical point of view.

Variables and Units

$$
f_{0}=\left\{f_{\text {quantity }}\right\}\left[f_{\text {unit }}\right]=12345(67) \mathrm{Hz}
$$

- Quantity always in italic.
- Note that $12345 \pm 67 \mathrm{~Hz}$ is incorrect from mathematical point of view.
- Unit always in roman.

Variables and Units

$$
f_{0}=\left\{f_{\text {quantity }}\right\}\left[f_{\text {unit }}\right]=12345(67) \mathrm{Hz}
$$

- Quantity always in italic.
- Note that $12345 \pm 67 \mathrm{~Hz}$ is incorrect from mathematical point of view.
- Unit always in roman.
- A short space (\backslash, in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$) placed between the quantity and the unit symbol (except the units of degree, minute, and second).

Variables and Units

$$
f_{0}=\left\{f_{\text {quantity }}\right\}\left[f_{\text {unit }}\right]=12345(67) \mathrm{Hz}
$$

- Quantity always in italic.
- Note that $12345 \pm 67 \mathrm{~Hz}$ is incorrect from mathematical point of view.
- Unit always in roman.
- A short space (\backslash, in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$) placed between the quantity and the unit symbol (except the units of degree, minute, and second).
- Units are always in lowercase (meter, second), except those derived from a proper name of a person (Tesla, Volt) and symbols containing signs in exponent position $\left({ }^{\circ} \mathrm{C}\right)$.

Variables and Units

$$
f_{0}=\left\{f_{\text {quantity }}\right\}\left[f_{\text {unit }}\right]=12345(67) \mathrm{Hz}
$$

- Quantity always in italic.
- Note that $12345 \pm 67 \mathrm{~Hz}$ is incorrect from mathematical point of view.
- Unit always in roman.
- A short space (\backslash, in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$) placed between the quantity and the unit symbol (except the units of degree, minute, and second).
- Units are always in lowercase (meter, second), except those derived from a proper name of a person (Tesla, Volt) and symbols containing signs in exponent position $\left({ }^{\circ} \mathrm{C}\right)$.
- Different units are separated by a space (Nm not Nm) or a c-dot $(1 \mathrm{~N} \cdot \mathrm{~m})$.

Variables and Units

$$
f_{0}=\left\{f_{\text {quantity }}\right\}\left[f_{\text {unit }}\right]=12345(67) \mathrm{Hz}
$$

- Quantity always in italic.
- Note that $12345 \pm 67 \mathrm{~Hz}$ is incorrect from mathematical point of view.
- Unit always in roman.
- A short space (\backslash, in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$) placed between the quantity and the unit symbol (except the units of degree, minute, and second).
- Units are always in lowercase (meter, second), except those derived from a proper name of a person (Tesla, Volt) and symbols containing signs in exponent position $\left({ }^{\circ} \mathrm{C}\right)$.
- Different units are separated by a space (Nm not Nm) or a c-dot $(1 \mathrm{~N} \cdot \mathrm{~m})$.
- Prefixes are written in roman with no space between symbol and prefix (1 THz vs. 1 THz vs. 1 T Hz vs. 1 THz).

Variables and Units

$$
f_{0}=\left\{f_{\text {quantity }}\right\}\left[f_{\text {unit }}\right]=12345(67) \mathrm{Hz}
$$

- Quantity always in italic.
- Note that $12345 \pm 67 \mathrm{~Hz}$ is incorrect from mathematical point of view.
- Unit always in roman.
- A short space (\backslash, in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$) placed between the quantity and the unit symbol (except the units of degree, minute, and second).
- Units are always in lowercase (meter, second), except those derived from a proper name of a person (Tesla, Volt) and symbols containing signs in exponent position $\left({ }^{\circ} \mathrm{C}\right)$.
- Different units are separated by a space (Nm not Nm) or a c-dot $(1 \mathrm{~N} \cdot \mathrm{~m})$.
- Prefixes are written in roman with no space between symbol and prefix (1 THz vs. 1 THz vs. 1 T Hz vs. 1 THz).
- $l=1.31 \times 10^{3} \mathrm{~m}, l=1.31 \cdot 10^{3} \mathrm{~m}, S=20 \mathrm{~m} \times 30 \mathrm{~m}$.

Decimal Sign and Exponents

- Decimal sign is either a comma or a point $(1,234$ or 1.234$)$.

Decimal Sign and Exponents

- Decimal sign is either a comma or a point (1,234 or 1.234).
- Numbers can be grouped from the decimal sign or from left (12345.6789 or 1234), use small space then.

Decimal Sign and Exponents

- Decimal sign is either a comma or a point (1,234 or 1.234).
- Numbers can be grouped from the decimal sign or from left (12345.6789 or 1234), use small space then.
- Negative exponents should be avoided when the numbers are used, except when the base 10 is used (10^{-5} not 4^{-8}, type $1 / 4^{8}$ instead).

Decimal Sign and Exponents

- Decimal sign is either a comma or a point (1,234 or 1.234).
- Numbers can be grouped from the decimal sign or from left (12345.6789 or 1234), use small space then.
- Negative exponents should be avoided when the numbers are used, except when the base 10 is used (10^{-5} not 4^{-8}, type $1 / 4^{8}$ instead).
- Multiplication with • or \times. Do not use any symbol for products like $a b, \mathbf{A x}$, etc. Use when multiplication operation has to be highlighted, i.e., multi-line equation or $2.125 \cdot 10^{8}$.

Decimal Sign and Exponents

- Decimal sign is either a comma or a point (1,234 or 1.234).
- Numbers can be grouped from the decimal sign or from left (12345.6789 or 1234), use small space then.
- Negative exponents should be avoided when the numbers are used, except when the base 10 is used (10^{-5} not 4^{-8}, type $1 / 4^{8}$ instead).
- Multiplication with • or \times. Do not use any symbol for products like $a b, \mathbf{A x}$, etc. Use when multiplication operation has to be highlighted, i.e., multi-line equation or $2.125 \cdot 10^{8}$.
- Number of significant digits (410008 vs 410000 vs $4.1 \cdot 10^{5}$).

Decimal Sign and Exponents

- Decimal sign is either a comma or a point (1,234 or 1.234).
- Numbers can be grouped from the decimal sign or from left (12345.6789 or 1234), use small space then.
- Negative exponents should be avoided when the numbers are used, except when the base 10 is used (10^{-5} not 4^{-8}, type $1 / 4^{8}$ instead).
- Multiplication with • or \times. Do not use any symbol for products like $a b$, Ax, etc. Use when multiplication operation has to be highlighted, i.e., multi-line equation or $2.125 \cdot 10^{8}$.
- Number of significant digits (410008 vs 410000 vs $4.1 \cdot 10^{5}$).

Constants

mathematical Dimensionless with fixed numerical value of no direct physical meaning or necessity of a physical measurement.
physical Often carry dimensions, they are universal and constant in time.

Constants

mathematical Dimensionless with fixed numerical value of no direct physical meaning or necessity of a physical measurement.

- Examples: Archimedes' constant (π), Euler's number (e), imaginary unit (j).
physical Often carry dimensions, they are universal and constant in time.
- Examples: speed of light in vacuum $\left(c_{0}\right)$, electron charge (e), permittivity of vacuum (ε), impedance of vacuum $\left(Z_{0}\right)$.

Constants

mathematical Dimensionless with fixed numerical value of no direct physical meaning or necessity of a physical measurement.

- Examples: Archimedes' constant (π), Euler's number (e), imaginary unit (j).
physical Often carry dimensions, they are universal and constant in time.
- Examples: speed of light in vacuum $\left(c_{0}\right)$, electron charge (e), permittivity of vacuum (ε), impedance of vacuum $\left(Z_{0}\right)$.
mathematical always in roman type, i.e., $\mathrm{e}^{\mathrm{j} \pi}+1=0$
physical always in italic type, i.e., $2 c_{0}$, cf. e^{2} vs. e^{2}

Recommended Literature

Cleveland, W. S.: The Elements of Graphing Data

Cleveland, W. S.: Visualizing Data

Tufte, E. R.: The Visual Display of Quantitative Information

Exmana a voer
Envisioning Information

Tufte, E. R.: Envisioning Information
 Explanation

Packages to Get

Must have

1. $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ distribution \quad MikTeX
2. $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ editor \triangle TeXstudio
3. $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ packaged (can be installed on the
fly)
4. Spell-checker \quad How to install
5. Reference database editor \triangle JabRef
```
Optional
```


Codes from MATLAB fileexchange (mcode, cbrewer, fig2u3d, vrml, export_fig).

Overleaf

Overleaf (2018) = ShareLaTeX (before 2018) + Overleaf (before 2018)

- On-line tool for collaborative $\mathrm{E}^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ writing.
- Standard account for free (some limitations).
- A plethora of standardized templates.
- Overleaf
- Web page, login, application.
- Sharing, GIT.
- History, back up.
- Types of documents (report, paper, CV, project proposal), templates.
- External style files, animate.

Questions?

B0B17MTB, BE0B17MTB - MATLAB matlab@fel.cvut.cz

December 5, 2022
Winter semester 2022/23

This document has been created as a part of B0B17MTB course.
Apart from educational purposes at CTU in Prague, this document may be reproduced, stored, or transmitted only with the prior permission of the authors.
Acknowledgement: Filip Kozák, Pavel Valtr, Michal Mašek.

[^0]: ${ }^{a}$ W. S. Cleveland: The Elements of Graphing Data. Wadsworth Advanced Book Program, 1985.

[^1]: ${ }^{a}$ W. S. Cleveland: The Elements of Graphing Data. Wadsworth Advanced Book Program, 1985.

