Lecture 1: Matlab in a Nutshell
 A8B17CAS

Miloslav Čapek

Department of Electromagnetic Field
Czech Technical University in Prague
Czech Republic
miloslav.capek@fel.cvut.cz
September 20
Winter semester 2022/23

Outline

1. What is Matlab?
2. Launching and Termination
3. Matlab Environment
4. Scalars, Vectors, Matrices
5. Basic Math Operations

Matlab is. . .

- High-level programming language (4th generation language).
- Interpreted language (not compiled, but... JIT).
- Intended mainly for numerical computing (nevertheless includes MuPAD symbolic kernel).
- Philosophy: kernel \& tool boxes \& user-defined functions \rightarrow wide application.
- Wide possibilities of linking with other tools (Java, C++, Fortran, Python, .NET, Excel, physical- / multi-physical softwares).
- Speed (of well written) algorithm comes near to that of C++.
- Excellent for "fast prototyping."
- Matlab does not require variables declaration (not always the advantage).
- Multi-licensed for CTU.
- Available for students as well!
- CTU students: download.cvut.cz
- FEE students: svti.fel.cvut.cz/cz/services/software/matlab.html

Historical Development of MATLAB

- the 1970's
- Cleve Moler ${ }^{1}$, Matlab used instead of Fortran.
- MATrix LABoratory \rightarrow matrix is the basic data structure.
- Fortran-based syntax.
- 1983
- Jack Little rewrote Matlab in C.
- New functionality and new mathematical libraries added.
- 1984 (Matlab is so far for free!)
- MathWorks founded in 1984
- 2004
- Matlab used by more than 1 million of active users.
- now...
- R2022a is the newest version of Matlab.
- local distribution: Humusoft s.r.o.

[^0]
Alternatives to Matlab

Fortran: most of the libraries still in Fortran, used mostly by physicists
Python: for free, fast and intuitive; Spyder provides Matlab-like features
Mathematica: symbolic and numerical calculations, excellent symbolic kernel, extensive applicability, mostly for mathematicians and physicists

Maple: symbolic and numerical calculations
MathCad: used for symbolic and numerical calculations, slightly out-of-date
Octave: for free, syntax and functionality similar to Matlab, not so extensive, smartphone executable
R: for free, designed particularly for statistical applications
Scilab: Matlab-like, open documentation
Derive: small, fast, Casio calculator executable

Launching Matlab

- Desktop icon

- Command line:
- matlab

- Matlab can be launched with a set of optional parameters.
- matlab -r "test(10)"
- System requirements ${ }^{2}$ for Matlab R2022a+:
- Windows $10+$
- 4 GB RAM
- 3.1 GB of HDD (Matlab only), 5-8 GB for a typical installation
- Any Intel or AMD x86-64 processor
- Available also for Mac and Linux!

[^1]
Matlab Termination

- Close button in the top right of Matlab window.

	-	官	\times	
xcumentation		ρ	$\&$	Sign In

- Possibility to terminate Matlab in the command window.

```
>> quit % terminates Matlab
>> exit % -//-
```

- More advanced options (see documentation).

```
>> quit cancel
    exit force
```


The Matlab Environment

The Matlab Environment - Panels

1. Command Window

2. Workspace
3. Command History - not activated, to activate \rightarrow
4. Current Folder
5. Current Folder - Details
6. Current Working Directory
7. Status ("Busy" when Matlab is executing your code)
8. Search in documentation

Matlab Online

- matlab.mathworks.com
- Runs in a web browser.
- Requires (CTU) log in.
- Slower than regular Matlab.

Documentation

>> doc \% opens documentation window
>> doc sin \% opens documentation of sin function

Matlab Commands

Matlab is cAsE sEnSiTiVe!

- Almost entirely, with certain exceptions (properties of graphics objects, ...).
- Pay attention to typos and variable names (see later).
- New versions of Matlab offer certain options.
a, A, b, c, x1, x2, M_12, test1, matrix_A, fx, fX
- Beware of different syntax in Mathematica, e.g., $\sin (x)$ vs. Sin[x], etc.
- Following syntax is incorrect both in Matlab and Mathematica:

```
matrix A % contains space
coef.a % possible only if coef is of type 'struct'
```

- Will be discussed in the next lectures.

Naming Conventions

- Choose names corresponding to the meaning of each particular variable.
- Letters and numbers are allowed, other symbols (colon ":", hyphen "-" and others) are not.
- Underscore is allowed in the variable name " _" (not at the beginning, though!).

Naming Conventions

- Choose names corresponding to the meaning of each particular variable.
- Letters and numbers are allowed, other symbols (colon ":", hyphen "-" and others) are not.
- Underscore is allowed in the variable name " _" (not at the beginning, though!).

Recommendations:

- Lowercase letters in the names of scalars and variables ($a=17.59$; $)$.
- Matrix names usually start with a capital letter ($\mathrm{A}=[\mathrm{I} \quad$;).
- Iteration variables, variables used in for cycles usually named m, n, k, etc.
- It is advisable to avoid i and j (complex unit).
- Avoid, if possible, standalone letter "1" (to be confused with one " 1 ") and predefined variables in Matlab environment (see later).
- Avoid using names of existing functions or scripts (overloading can occur).
- The same conventions are valid for names of functions and scripts.

Variable Names

- Examples of valid variable names:
a, $A, b, C, x 1, x 2, M _12$, test1, matrix_A, fx, fX
- Examples of invalid variable names:

```
lvar % starts with a number (not possible in MATLAB)
matrix A % contains space
coef.a % possible only if coef is of type 'struct'
Test-1 % algebraic expressing: ans = Test - 1
f(y) % makes sense when using symbolic expressions
```

- Examples of valid numbers in Matlab,

$$
3,-66,+0.0015, .015,1 \mathrm{e} 2,1.6025 \mathrm{e}-10,05.1
$$

Workspace - Output Deletion

- To clean (erase) command window:

```
>> clc
```

- To clean one (or more) variable(s):

```
>> clear % whole Workspace is deleted
>> clear XX % variable XX is deleted
>> clear XX YY % variables XX and YY are deleted
>> clear z* % everything starting with 'z' is deleted
```

- clear has a number of other options (graphics, I/O)

Command History Window

- Command History window stores all commands from the Command Window.
- Command History is accessible though \uparrow or \downarrow.
- it is possible to filter out past commands by, e.g.:
» $A=[+\uparrow$.
- It is possible to copy-and-paste entire Command History: SHIFT / CTRL / CTRL $+\mathrm{A} \rightarrow \mathrm{CTRL}+\mathrm{C}$.

Matrices in Matlab

- Matrix is a basic data structure in Matlab.
- There are the following variables' types depending on size:
- scalar: 1×1
- vector: $M \times 1$ or $1 \times N$
- matrix: $M \times N$
- array (multidimensional matrices):

$$
M \times N \times P \times Q \times R \times \ldots
$$

- Matrices can be complex.
- It can contain text as well (beware of the length).
- M-by- N matrix:
$\left.a_{i, j} \begin{array}{c}N \text { columns } \\ i \text { changes } \\ \downarrow \text { changes } \\ \downarrow\left[\begin{array}{cccc}a_{1,1} & a_{1,2} & a_{1,3} & \ldots \\ a_{2,1} & a_{2,2} & a_{2,3} & \ldots \\ a_{3,1} & a_{3,2} & a_{3,3} & \ldots \\ a_{4,1} & a_{4,2} & a_{4,3} & \ldots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right]\end{array}\right)$

Matrix Creation

- Following techniques are available:
- element-by-element entering (suitable for small matrices only),
- colon notation ":" to define elements of series,
- generation by built-in functions,
- generation of matrices in m-files,
- import and export from/to external files(.mat,.txt, .xls,...).

Matrix Construction Element-by-element I.

- Test the following commands to construct matrices by element enumeration.

```
>> a1 = -1
>> a2 = [-1] % brackets are redundant
```

```
>> v1 = [lllll
>> v2 = [-1; 0; 1]
```

```
>> M1 = [l-1 0 1; -2 0 2]
>> M2 = [-1 -2; 0 0 ; 1 2]
>> M3 = [[-1 -2]; [0 0]] % inner brackets are redundant
```

- Suitable for small matrices only.

$$
\begin{gathered}
a_{1}=a_{2}=-1 \\
\mathbf{v}_{1}=\left[\begin{array}{lll}
-1 & 0 & 1
\end{array}\right] \\
\mathbf{v}_{2}=\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right] \\
\mathbf{M}_{1}=\left[\begin{array}{rrr}
-1 & 0 & 1 \\
-2 & 0 & 2
\end{array}\right] \\
\mathbf{M}_{2}=\left[\begin{array}{rr}
-1 & -2 \\
0 & 0 \\
1 & 2
\end{array}\right] \\
\mathbf{M}_{3}=\left[\begin{array}{rr}
-1 & -2 \\
0 & 0
\end{array}\right]
\end{gathered}
$$

Matrix Construction Element-by-element II.

- Construct the following matrices:
- Matrix values are defined inside square brackets [],
- semicolon ";" separates individual rows of a matrix.

$$
\mathbf{A}=\left[\begin{array}{rr}
-1 & 1 \\
1 & -2
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

Matrix Construction

- Semicolon placed at the end of a command suppresses the display of the output in the Command Window.
- Note: it is possible to copy and paste code including "»"

$$
\begin{aligned}
& \gg a=1 \\
& \gg b=5 ;
\end{aligned}
$$

- When there is more than one command on the same line, a comma is used to separate them.

$$
\begin{aligned}
& \gg \mathrm{a}=1 ; \mathrm{b}=5 \\
& \gg \mathrm{a}=1 ; \mathrm{b}=5 ;
\end{aligned}
$$

- Row vs. column vector:

$$
\left.\begin{array}{rl}
\hline>c & =\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \\
\gg d=[0 ; & 0 ;
\end{array}\right]
$$

Basic Math Operators I.

- Operator types:
- arithmetic:
- matrix,
- vector,
- relational,
- logical and other (to be mentioned later ...).
- Other operations using Matlab functions:
- complex conjugate,
- sum, determinant, square root,
- and hundreds of other functions ...
$+\quad$ addition
- subtraction
* multiplication
^ power
.' transpose
\backslash left matrix division
/ right matrix division
. dot notation

Notice the operator's precedence (to be discussed later).

- see Matlab \rightarrow Language Fundamentals \rightarrow Operators and Elementary Operations \rightarrow Arithmetic

Basic Math Operators II.

Type in the following commands:

- Zero can be omitted with a decimal number beginning with zero (not recommended).

$$
\begin{aligned}
\gg \text { a } 3 & =-2 / 4 \\
\gg \text { a } 4 & =-0.5 \\
\gg \text { a } 5 & =-.5
\end{aligned}
$$

- What is the difference between a_{3}, a_{4} and a_{5} ?
- Beware the precedence of operators:

$$
\begin{aligned}
& \hline>3 * 5 * 6 \\
& \gg \text { a1 }=15 \\
& \gg \text { a } 2=10 ; \\
& \gg \text { a } 2 / a 3 \\
& \gg \text { a } 2 / a 3 * a 4 \\
& \gg \text { a } 2 /(a 3 * a 4)
\end{aligned}
$$

- Explain the difference between $a 2 / a 3 * a 4$ and $a 2 /(a 3 / a 4)$.

Basic Math Functions I.

Math functions in Matlab are generally divided in three groups:

- Scalar
- Function operates over individual elements of a matrix,
- e.g.: sin, sqrt, log, factorial.
- Vector
- Function operates over individual rows/columns of a matrix,
- e.g.: sum, max.
- Matrix
- Function operates over a whole matrix,
- e.g.: det, trace.

Basic Math Functions II.

- Using Matlab help, calculate the following expression: $a \sin ^{2}(\alpha)+a \cos ^{2}(\alpha)-a$ - Use numerical values your own choice.
- Verify following logarithmic identity: $\log _{10}(a)+\log _{10}(b)-\log _{10}(a b)=0$
- Find sum of all elements in individual rows of the following matrix:

$$
T=\left[\begin{array}{rrrr}
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
6 & 7 & 8 & 9 \\
0.2 & 0.3 & 0.4 & 0.5
\end{array}\right]
$$

Basic Math Functions III.

- Assume following vectors $\mathbf{u}=(1,2,3)$ and $\mathbf{v}=(3,2,1)$.
- Calculate:

$$
\begin{array}{cc}
\mathbf{u} \mathbf{v}^{\mathrm{T}} & \mathbf{v} \mathbf{u}^{\mathrm{T}} \\
\mathbf{v}^{\mathrm{T}} \mathbf{u} & \mathbf{u}^{\mathrm{T}} \mathbf{v} \\
\mathbf{u} \cdot \mathbf{v} & \mathbf{u} \times \mathbf{v}
\end{array}
$$

- Following functions are needed:
- transpose (.') of a matrix,
- dot scalar product,
- cross product.
- What is the result of the above mentioned operations?

Questions?

A8B17CAS
miloslav.capek@fel.cvut.cz

September 20
Winter semester 2022/23

This document has been created as a part of A8B17CAS course.
Apart from educational purposes at CTU in Prague, this document may be reproduced, stored, or transmitted only with the prior permission of the authors.

[^0]: ${ }^{1}$ see: http://www.mathworks.com/company/aboutus/founders/clevemoler.html

[^1]: ${ }^{2}$ https://www.mathworks.com/support/requirements/matlab-system-requirements.html

