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B-tree -- Rudolf Bayer, Edward M. McCreight, 1972 

• All lengths of paths from the root to the leaves are equal.
• B-tree is perfectly balanced. Keys in the nodes are kept sorted.
• Fixed parameter k > 1  dictates the same size of all nodes.
• Each node except for the root contains at least k and at most 2k keys and if it 

is not a leaf  it has at least k+1 and at most 2k+1 children. 
• The root may contain any number of keys from 1 to 2k. If it is not 

simultaneously a leaf it has at least 2 and at most 2k+1children.

X Y

Y < keyskeys < X X < keys < Y

B tree Description 1
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B tree Alternate specification 2

Cormen et al. 1990:     B-tree  degree:

Nodes have lower and upper bounds on the number of keys they can contain. 
We express these bounds in terms of a fixed integer t  2 called 
the minimum  degree of the B-tree:

a. Every node other than the root must have at least t1 keys. 
Every internal node other than the root thus has at least t children. 
If the tree is nonempty,  the root must have at least one key.

b. Every node may contain at most 2t1 keys. 
Therefore, an internal node may have at most 2t children. 
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t = 5
x x x
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min keys = 1 max keys = 3 min keys = 4 max keys = 9
children  = 2 children  = 4 children  = 5 children   = 10



1 52 4 19 2220 25 27 36 42 604510 12 15 16 17

8 14

18

26 41

Find 17

Search in the node is sequential (or binary or other...).

If the node is not a leaf and the key is not in the node
then the search continues in the appropriate child node.

If the node is a leaf and the key is not in the node
then the key is not in the tree.
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B tree - Find Example 3



B tree - Update strategies multi and single phase 4

Update strategies:

1. Multi phase strategy:  “Solve the problem when it appears”.
First insert or delete the item and only then rearrange the tree if necessary. 
This may require additional traversing up to the root.

2. Single phase strategy:   “Avoid the future problems”.
Travel from the root to the node/key which is to be inserted or deleted
and during the travel rearrange the tree to prevent the additional 
traversing up to the root.
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8 2617

2 4 10 1412 16 19 2522 4236 45

Insert 5 8 2617 41

52 4 19 2522 36 4241 45

Insert 20 8 2617

19 2220 25 36 4241 45

10 1412 16

10 1412 16

41

B-tree

52 4
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B tree - Insert Insert rules I 5
Multi phase strategy



27

Insert 27 8 2617

2 4 5 19 2220 25 36 4241 4510 1412 16

Select median, 
create new node,
move to it the values
bigger than the median.

Sort keys outside the tree. 

Try to insert the median
into the parent node. 

27 4136 4542

27 36

41

42 45

8 2617 27

19 2220 25

41

27 36 42 45Success.
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B tree Insert Insert rules II 6
Multi phase strategy



Insert 15 8 2617 41

2 4 5 19 2220 25 27 36 42 45
15

10 1412 16

10 1412 1615

8 2617 4114

?

10 12

14

15 16

Select median, 
create new node,
move to it the values
bigger than the median.

Sort keys outside the tree. 

Try to insert the median
into the parent node. 

Success?
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B tree - Insert Insert rules III 7
Multi phase strategy



Key 15 inserted into a leaf... 8 2617 41

2 4 5 19 2220 25 27 36 42 4510 12

8 1714 4126

8 14

Select median, create new node,
move to it the values bigger 
than the median together with 
the corresponding  references.

Sort values 

15 16

Cannot propagate the median into
the parent (there is no parent),
create a new root and store the
median there. 

14

... key 14 goes to parent node

The parent node is full – repeat the process analogously.

26 41

8 14

17

26 41

17
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B tree - Insert Insert rules III 8
Multi phase strategy



2 4 5 19 2220 25 27 36 42 4510 12 15 16

8 14

17

26 41

Recapitulation - insert 15

Each level acquired one new node, a new root was created too,
the tree grows upwards and remains perfectly balanced.

8 2617 41

2 4 5 19 2220 25 27 36 42 4510 1412 16

Insert 15 

Unaffected nodes
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B tree - Insert Insert rules III 9
Multi phase strategy



2 54 19 2220 25 27 36 42 604510 12 15 16

8 14

17

26 41Delete 4

2 5 19 2220 25 27 36 42 604510 12 15 16

8 14

17

26 41

Delete in a sufficiently 
full leaf.

Deleted

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14

B tree - Delete Delete rules I 10
Multi phase strategy



2 5 2220 25 27 36 42 604510 12 15 16

8 14

17

26 41

Delete in an internal node
The deleted key is substituted
by the smallest bigger key,
like in an usual BST.

The smallest bigger key is always in a leaf in a B-tree.
If the leaf is sufficiently full the delete operation is complete.

Delete 17

2 5 20 2522 27 36 42 604510 12 15 16

8 14

19

26 41

19
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B tree - Delete Delete rules II 11
Multi phase strategy



2 5 20 2522 27 36 42 604510 12 15 16

8 14

19

26 41

Delete in an 
insufficiently full leaf.

Delete 27

26 42

45 6036 41

36 4241 6045

The neighbour leaf
is sufficiently full.

Merge the keys of the two leaves
with the dividing key in the parent
into one sorted list.

Insert the median of the sorted list 
into the parent and distribute
the remainig keys into
the left and right children of the median.

26 41

42 604536
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B tree - Delete Delete rules III 12
Multi phase strategy



2 5 20 2522 27 36 42 604510 12 15 16

8 14

19

26 4126 42

36 41 45 60

27 correctly deleted

Recapitulation - delete 27

2 5 20 2522 27 36 42 604510 12 15 16

8 14

19

26 41

Unaffected nodes
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B tree - Delete Delete rules III 13
Multi phase strategy



Delete 12

8 14

10 14 15 16

None of the neighbours
is sufficiently full.

8 14

15 1610 12

2 5 20 2522 27 36 42 604510 12 15 16

8 14

19

26 4126 42

36 41 45 60

Merge the keys 
of the node 
and of one of the neighbours 
and the median in the parent 

into one sorted list.
Move all these keys to the original node,
delete the neighbour, remove the original
median and associated reference 
from the parent.

Delete in an 
insufficiently full node.
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B tree - Delete Delete rules IV 14
Multi phase strategy



Deleted 12
The parent violates
B-tree rules.

2 5 20 2522 27 3610 1514 16

8

19

26 4126 42

36 41

If the parent of the deleted node is not sufficiently full
apply the same deleting strategy to the parent and continue the process 
towards the root until the rules of B-tree are satisfied.  

8

19

26 4126 42
26 418 2619 42

42 604545 60

8 2619 42 26 41
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B tree - Delete Delete rules IV 15
Multi phase strategy



26 418 2619 42

2 5 20 2522 27 3610 1514 16 36 41 42 604545 60

Key 12 was deleted and the tree was reconstructed accordingly.

2 5 20 2522 27 36 42 604510 12 15 16

8 14

19

26 4126 42

36 41 45 60

Unaffected nodes

Recapitulation - delete  12
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B tree Delete rules IV 16
Multi phase strategy
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B tree - Insert Example 17

G PM X

A DC E J K N O R TS U V Y Z

G PM X

B DC E J K N O R TS U V Y ZA

G PM T

B DC E J K N O R S U V Y ZA

X

Q

Insert B

Insert Q
Unaffected
nodes

Single phase strategy

Cormen et al. 1990, t = 3, minimum degree 3, max degree = 6,
minimum keys in node = 2, maximum keys in node = 5. 
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B tree - Insert Example 18

G PM T

B DC E J K N O R S U V Y ZA

X

Q

G M T

B DC E J K N O R S U V Y ZA

X

QL

G

P

M T

B D E J K N O R S U V Y ZA

X

QL

C

F

P

Insert F

Insert L

Unaffected
nodes

Single phase strategy

Single phase: Split the root, because it is full, and
then continue downwards inserting L
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B tree - Delete Delete rules I 19

G

P

M T

B D E J K N O R S U V Y ZA

X

QL

C

F

G

P

M T

B D E J K N O R S U V Y ZA

X

QL

C

Delete F

1. If the key k is in node X and X is a leaf, delete the key k from X.

Unaffected
nodes

Single phase strategy



2. If the key k is in node X and X is an internal node, do the following:

J K
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B tree - Delete Insert rules II 20

G

P

M T

B D E J K N O R S U V Y ZA

X

QL

C

G

P

L T

B D E N O R S U V Y ZA

X

Q

C

Delete M

2a. If the child Y that precedes k in node X has at least t keys, then find the
predecessor kp of k in the subtree rooted at Y. Recursively delete kp, and replace k
by kp in X. (We can find kp and delete it in a single downward pass.)
2b. If Y has fewer than t keys, then, symmetrically, examine the child Z that follows k
in node X and continue as in 2a.

Single phase strategy
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B tree - Delete Delete rules II 21

J K

G

P

L T

B D E N O R S U V Y ZA

X

Q

C

J K

P

L T

B D E N O R S U V Y ZA

X

Q

C

Delete G

2c. Otherwise, i.e. if both Y and Z have only t1 keys, merge k and all of Z into 
Y, so that X loses both k and the pointer to Z, and Y now contains 2t1 keys.
Then free Z and recursively delete k from Y.

Single phase strategy
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B tree - Delete Delete rules III 22

3. If the key k is not present in internal node X, determine the child X.c of the
appropriate subtree that must contain k, if k is in the tree at all. If X.c has
only t1 keys, execute step 3a or 3b as necessary to guarantee that we 
descend to a node containing at least t keys. Then finish by recursing on the 
appropriate child of X.

J K

P

L T

B D E N O R S U V Y ZA

X

Q

C

Delete D

Single phase strategy



PL T XC

J KB E N O R S U V Y ZA Q
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B tree - Delete Delete rules III 23

J K

P

L T

B D E N O R S U V Y ZA

X

Q

C

3a. If X.c and both of X.c ’s immediate siblings have t1 keys, merge X.c
with one sibling, which involves moving a key from X down into the new
merged node to become the median key for that node.

Delete D

PL T XC

J KB E N O R S U V Y ZA Q

Single phase strategy

Merge

Merged

D
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B tree - Delete Delete rules III 24

PL T XE

J KC N O R S U V Y ZA Q

Delete B

3b. If X.c has only t1 keys but has an immediate sibling with at least t keys,
give X.c an extra key by moving a key from X down into X.c, moving a
key fromX.c ’s immediate left or right sibling up into X, and moving the
appropriate child pointer from the sibling into X.c.

PL T XC

J KB E N O R S U V Y ZA Q

Single phase strategy



B+ tree is analogous to B-tree, namely in:
-- Being perfectly balanced all the time,
-- that nodes cannot be less than half full,
-- operational complexity.

The differences are:
-- Records (or pointers to actual records) are stored only in the leaf nodes,
-- internal nodes store only search key values which are used only as routers to 
guide the search. 

The leaf nodes of a B+-tree are linked together to form a linked list. This is done 
so that the records can be retrieved sequentially without accessing the B+-tree 
index. This also supports fast processing of range-search queries.

B+ tree

B+ tree Description 25
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28 50

60

75 85

5 20 10 15 50 55 75 8028 30 60 65 85 9590

Routers and keys 75 Data records
or pointers to them

Values in internal nodes are routers, originally each of them was a key when a 
record was inserted. Insert and Delete operations split and merge the nodes and 
thus move the keys and routers around. A router may remain in the tree even after 
the corresponding record and its key was deleted. 

Values in the leaves are actual keys associated with the records and must be 
deleted when a record is deleted (their router copies may live on).

B+ tree Description/example 26
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Leaves links



Place the key and its associated record in the leaf. 

Free slot in a leaf?   YES

1. Consider all keys in the leaf, including K, to be sorted.
2. Insert middle (median) key M in the parent node in the appropriate slot Y.

(If parent does not exist, first create an empty one = new root.)
3. Split the leaf into two new leaves L1 and L2.
4. Left leaf (L1) from Y contains records with keys smaller than M.
5. Right leaf (L2) from Y contains records with keys equal to or greater than M. 

Find, as in B tree, correct leaf to insert K.     Then there are 3 cases:

Free slot in a leaf?   NO.     Free slot in the parent node?  YES. 

Note: Splitting leaves and inner nodes works in the same way as in B-trees. 

Case 1

Case 2

B+ tree - Insert Insert I 27
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Inserting key K (and its associated data record) into B+ tree



1. Split the leaf to two leaves L1 and L2, consider all its keys including K sorted, 
denote M median of these keys.

2. Records with keys < M go to the left leaf L1.
3. Records with keys >= M go to the right leaf L2. 

4. Split the parent node P to nodes P1 and P2, consider all its keys including M
sorted, denote M1 median of these keys. 

5. Keys < M1 key go to P1.
6. Keys >= M1 key go to P2.
7. If parent PP of P  is not full, insert M1 to PP and stop.

(If PP does not exist, first create an empty one = new root.)
Else  set M := M1, P := PP and continue splitting  parent nodes recursively 
up the tree, repeating from step 4.   

Free slot in a leaf?  NO.     Free slot in the parent node?  NO. 

Case 3

B+ tree - Insert Insert II 28

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14

Inserting key K (and its associated data record) into B+ tree

Find, as in B tree, correct leaf to insert K.     Then there are 3 cases:



25 7550

5 20 10 15 50 6055 65 75 8580 9025 30

25 7550

5 20 10 15 50 6055 65 75 8580 9025 3028

Insert 28

Changes Leaves links

Initial tree

Data records and pointers to them are not drawn here for simplicity's sake.  

B+ tree - Insert Insert example I 29
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25 6050 75

25 7550

5 20 10 15 50 6055 65 75 8580 9025 3028

Insert 70

5 20 10 15 50 55 75 8580 9025 3028 60 7065

Changes

Initial tree

B+ tree - Insert Insert example II 30
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Leaves links

median = 60 



25 6050 75

Insert 95

5 20 10 15 50 55 75 8580 9025 3028 60 7065

25 50

60

75 85

5 2010 15 50 55 75 8025 3028 60 7065 85 9590

Changes

Initial tree

B+ tree - Insert Insert example III 31
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Leaves links

first median = 85 

second median = 60

Note the router 60 in the root, detached
from its original position in the leaf.



Delete the key and its record from the leaf L. Arrange the keys in the leaf in 
ascending order to fill the void. If the deleted key K appears also in the parent 
node P replace it by the next bigger key K1 from L (explain why it exists) and 
leave K1 in L as well.

Leaf more than half full  or  leaf == root?   YES.

Move one (or more if you wish and rules permit)  key from sibling S to the leaf L, 
reflect the changes in the parent P of L and parent P2 of sibling S.
(If S does not exist then L is the root, which may contain any number of keys).

Find, as in B tree, key K in a leaf.  Then there are 3 cases:

Leaf more than half full? NO.   Left or right sibling more than half full?  YES. 

Case 1

Case 2

B+ tree - Delete Delete I 32
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Deleting key K (and its associated data record) in B+ tree



1. Consider sibling S of L which has the same parent P as L.
2. Consider set M  of ordered keys of L and S without K but together with key K1  

in P which separates L and S.  
3. Merge: Store M in L, connect L to the other sibling of S (if exists), destroy S.   
4. Set the reference left to K1 to point to L. Delete K1 from P. If P contains K 

delete it also from P. If P is still at least half full stop, else continue with 5.
5. If any sibling SP of P is more then half full, move necessary number of keys  

from SP to P and adjust links in P, SP and their parents accordingly and stop.
Else set  L := P and continue recursively up the tree (like in B-tree), repeating 

from step 1.

Leaf more than half full? NO.   Left or right sibling more than half full?  NO. 
Case 3

B+ tree - Delete Delete II 33
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Note: Merging leaves and inner nodes works the same way as in B-trees. 

Find, as in B tree, key K in a leaf.  Then there are 3 cases:

Deleting key K (and its associated data record) in B+ tree



Delete 70

25 50

60

75 85

5 20 10 15 50 55 75 8025 3028 60 7065 85 9590

Changes

25 50

60

75 85

5 20 10 15 50 55 75 8025 3028 60 65 85 9590

Initial tree

B+ tree - Delete Delete example I 34
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Leaves links



Delete 25

Changes

25 50

60

75 85

5 20 10 15 50 55 75 8025 3028 60 65 85 9590

28 50

60

75 85

5 20 10 15 50 55 75 8028 30 60 65 85 9590

Initial tree

B+ tree - Delete Delete example II 35
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Leaves links



Delete 60

Changes

28 50

60

75 85

5 20 10 15 50 55 75 8028 30 60 65 85 9590

28 6050 85

5 20 10 15 50 55 85 959028 30 65 8075

Initial tree

B+ tree - Delete Delete example III 36
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Merge 

Leaves links

Deleted key 60
still exists
as a router



Too few keys,  merge these 
two nodes and bring a key 
from parent (recursively).

Delete 75  
28 50

60

75 85

5 10 50 55 75 8028 30 60 65 85 90

85

60 6580 85 90

28 50

28 6050 85

5 10 50 55 85 9028 30 60 8065

Initial tree

Progress...

... done.

B+ tree - Delete Delete example IV 37
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Find, Insert, Delete, 
all need (b logb n)  operations, where n is number of records in the tree, 
and b is the branching factor or, as it is often understood, the order of the tree.  

Note: Be careful, some authors (e.g CLRS)  define degree/order of B-tree as [b/2], there is no unified 
precise common terminology.

Range search thanks to the linked leaves is performed in time 
( b logb(n) + k/b) 
where k is the range (number of elements) of the query.

Complexities

B+ tree Operations complexity 38
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