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Game rules

Three piles with 4, 2, 1, pegs(s).

In one move, a player 
can remove 1 or 2 pegs from any pile(s). 

Player who removes the last peg wins.

Game representation

Represent the piles  by a triple of 
integers, number of pegs in the piles,
the initial state (position) is then [4,2,1].

The states (positions) accesible in a 
single move are connected 
by (directed) edges.  

Game example and analysis
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P positions  are positions that are winning for the 
Previous player (the player who just moved to the position)

N positions  are positions that  are winning for the 
Next player  (the player who will move to some next position).
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Determining P and N positions
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Subtraction Games

Let S be a set of positive integers. 
The subtraction game with subtraction set S is played as follows. 
From a pile with a large number, say n, of chips, two players alternate moves. A 
move consists of removing s chips from the pile where s ∈ S. 
Last player to move wins.

P- and N- positions in subtraction  game with  subtraction  set {2, 5, 8}.

From state K there is a transition  to the states K2, K5 and K8 
(if those are non-negative).

01234567891011121314151617

Example
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Generate P and N positions in the subtraction game with subtraction set {2, 5, 8}. 
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etc... 

Generate P and N positions in the subtraction game with subtraction set {2, 5, 8}. 
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Binary representation of positive integers in Fibonacci base

base:

N = N = 

base:
... ...



Then:
if RemLim <  Fmin then  P-position
if RemLim >= Fmin then  N-position

Rule: 
In N-position remove Fmin tokens. 
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Fibonacci Nim:

One pile of tokens. 
First player can remove 1 or more 
tokens but not all of them.
Next, each player than can remove at
most twice the number of tokens 
removed  in his oponent's last move.
Player who removes last token wins.

N = 

base:
...

Let:
- N be the current number of tokens.
- RemLim be maximum tokens 

which can be currently removed.
- Fmin be the rightmost  base

element present in N
(marked by the rightmost       ). 1
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N = 

base:
...

First move:
N = 45, RemLim = 44, Fmin = 3.
RemLim >= Fmin .... N-position
Remove Fmin:  N = 45─3 = 42

Example:
Pile with 45 tokens.

Next move:
N = 42, RemLim = 6, Fmin = 8.
RemLim < Fmin .... P-position

The opponent can remove 1 to 6 
tokens, that is, he can set the pile
to 41, 40, 39, 38, 37, 36 tokens.

All these  are N-positions, because
RemLim = 6, Fmin <= 5.

RemLim <  Fmin ....... P-position
RemLim >= Fmin ........N-position
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Example continues: 
Opponent took 4.
Pile with 38 tokens.

Next move:
The opponent can remove 1 or 2 
tokens, that is, he can set the pile
to 36 or 35 tokens.

All these  are N-positions, because
RemLim = 2, Fmin <= 2.

Next move:
N = 38, RemLim = 8, Fmin = 1.
RemLim >= Fmin .... N-position
Remove Fmin:  N = 38 1 = 37
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Rule: 
In N-position remove Fmin tokens. 


