Introduction

AOM33EOA
Grammatical Evolution. Cartesian GP.

Petr Posik

Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Cybernetics

Heavilly using slides from Jif¥i Kubalik, CIIRC CTU, with permission.

ClOSUTE PIOPEITY. . . .ottt ittt ettt et et e e et e e e
(@1 BTy e/ 11 =Y N 2SS

Mapping. .

MOUIO TULE. . . oottt et e e e e e e e e e e e e e e

Wrapping .

Mapping: Example.o

Crossover .

CGP

CGP Intro.

CGP Node

Genotype .
Mapping. .

Algorithm

Mutation. .

APPLCAtiON

Summary

Learning OUtCOMES. o e

References

Introduction 2 /44

Contents

®= GP and “closure” problem

m Grammatical Evolution

m Cartesian Genetic Programming

Strongly-typed GP

Representation and genotype-phenotype mapping
Crossover operators

Automatically defined functions

Examples: Symbolic regression, Artificial ant problem

Representation
Genotype-phenotype mapping
Examples: Design of boolean Circuits

P. Posik (© 2021 AOMB33EOA: Evolutionary Optimization Algorithms -3 / 44

GP and Closure Problem: Motivation Example

Closure property: any non-terminal should be able to handle as an argument any data type and value returned from a terminal or
non-terminal.

Fuzzy-rule based classifier consists of fuzzy if-then rules of type

Fuzzy rules use

m linguistic terms: small, medium small, medium, medium large, large,
m fuzzy membership functions: approximate the confidence in that the crisp value is represented by the linguistic term.

IF(x1 is medium) and (x3 is large) THEN class = 1 with cf = 0.73

small medium medium medium large
small large
1.0 1
0.0 Y
0.0 0.25 0.5 0.75 1.0
P. Posik (© 2021 AOMB33EOA: Evolutionary Optimization Algorithms —4 / 44

GP and Closure Problem: Motivation Example (cont.)

A syntactically correct tree representing a classifier as a disjunction of the three rules:
m IF(x1is small) THEN class = 1 with cf = 0.67,
m [F(x2is large) THEN class = 2 with cf = 0.89,
w IF(x1is medium) and (x3 is large) THEN class = 1 with cf = 0.73.

Subtree crossover or subtree mutation can produce an invalid @
tree (syntactically incorrect rule base).
CD) Gimed>

Closure property does not hold here and standard GP is not designed to handle a mixture of data types.

P. Posik (© 2021 AOMB33EOA: Evolutionary Optimization Algorithms -5 / 44

How to get around the closure constraint?

Several options:
= Embed one data type into another, i.e., actually use only a single data type. This is not always possible.
= Use a different kind of GP system that allows multiple data types:
= Strongly-typed GP

m Grammatical Evolution

P. Posik (© 2021 AOMB33EOA: Evolutionary Optimization Algorithms —6 / 44

Strongly-Typed Genetic Programming

STGP: defines syntax of evolved tree structures by specifying the data types of each argument of each non-terminal and the data
types returned by each terminal and non-terminal.

m It prevents generating illegal individuals.

® Quite a big overhead = inefficient for manipulating large trees.

F/T | Output | Input
OR 0 0.0
I 0 1.2.3
AND I 1 1
IS 1 None
CLASS 2 None
CF 3 None

Any other elegant way to get around the closure constraint?

P. Posik (© 2021 AOMB33EOA: Evolutionary Optimization Algorithms -7 / 44

Grammatical Evolution 8 /44

Grammatical Evolution
Grammatical Evolution (GE) [RCO98, OR01]:
m A grammar-based GP system that can evolve complete programs in an arbitrary language.
m The evolutionary process is performed on variable-length binary/integer strings.
m A genotype-phenotype mapping
m uses the numbers from chromosome
m to select production rules from a grammar in Backus-Naur form (BNF), and
m generates a program (expression tree) in a language described by the grammar.
m The “closure problem” is solved by generating only valid programs.
m The user specifies the grammar; no need to design any specific genetic search operators.

[ORO01] M. O'Neill and C. Ryan. Grammatical evolution. IEEE Transactions on Evolutionary Computation, 5(4):349-358, 2001.

[RCO98] Conor Ryan, J.J. Collins, and Michael O'Neill. Grammatical evolution: Evolving programs for an arbitrary language. In Proceedings of the First European Workshop on Genetic Programming, volume 1391,
pages 83-95, Paris, 1998. Springer-Verlag.

P. Posik (© 2021 AOMB33EOA: Evolutionary Optimization Algorithms -9 / 44

Backus-Naur Form

Backus-Naur form (BNF) is a notation for expressing the grammar of a language in the form of production rules.

BNF is represented by a tuple {T,N, P, S}, where
m T is a set of terminals, i.e., items that can appear in the language (+, -, X, ...),
m N is a set of nonterminals, i.e., items that must be further expanded into one or more terminals or nonterminals,
m P is aset of production rules that map the elements of N to N and T,
m Sis a start symbol (a member of N).

Remark: Do not confuse (non)terminals used in GE and (non)terminals used in GP!

P. Posik (© 2021 AOMBS33EOA: Evolutionary Optimization Algorithms —10 / 44

BNF: Arithmetical expressions

N = {<expr>, <op>, <pre-op>, <var>} Example of a tree compliant with the BNF:
T = {cos,+,-,/,*,%,1.0}
S = <expr>
P={
<expr> u= <expr><op><expr> (0)
| (<expr><op><expr>) (1)
| <pre-op>(<expr>) (2)
| <var>, 3)
<op> u= + 0)
| - M
|/ @
| * ®3)
<pre-op> := cos, 0)
<var> = X 0)
| 1.0, 1)

}

Each nonterminal has one or more possible ways of
expansion.

P. Posik (© 2021 AOMBS33EOA: Evolutionary Optimization Algorithms —11 / 44

Genotype-Phenotype Mapping Process

Mapping variable-length binary chromosomes into programs using a grammar:

Transform the binary chromosome into a list of integers (codons).
Set program to start symbol S of the grammar.
While program contains any nonterminal:
Let s be the first nonterminal in program.
Read the next codon c.
Use ¢ to choose a particular rule from the available production rules for symbol s.
Replace symbol s in program with the symbol expansion (the RHS of the rule).

® NS @

Return program.

P. Posik (© 2021 AOMB33EOA: Evolutionary Optimization Algorithms —12 / 44

Genotype-Phenotype Mapping Process: Modulo Rule
m Variable-length binary chromosomes
11011100111110000111011100] ...]11100110
are transcribed into codons (each group of 8 bits encodes an integer number)
22012402201 ...1102.

m The codons are used to select an appropriate production rule from the BNF definition to expand a given nonterminal using the
following mapping function:

chosen rule = (codon value) modulo (number of rules for the current nonterminal)

This implies that only syntactically correct programs can be generated!!!

Example: Assume that a nonterminal <op> is to be expanded, and the codon being read produces the integer 6.

There are 4 production rules for <op>: Then
6 modulo 4 =2
<op> == + (0)

| - @ would select rule (2).
| 7@
| * 0
P. Posik (© 2021 AOMBS33EOA: Evolutionary Optimization Algorithms —13 / 44

Genotype-Phenotype Mapping Process: Wrapping

= Mapping finishes when all of the nonterminals have been expanded.

m If the mapping process runs out of codons, wrapping is used: the chromosome is traversed from the beginning again. The codons
may be reused several times.

= Each time the same codon is expressed
m it represents the same integer value, but
m it may select a different production rule depending on the nonterminal being expanded.
s E.g, codon 240 can be read one time to expand nonterminal <expr>, another time to expand nonterminal <pre-op>, etc.

chromosome: 2201240|220] . ..1102.

= A maximum number of wrapping events is specified: if an incomplete mapping occurs after the specified number of wrapping
events, the individual is assigned the lowest possible fitness value.

P. Posik (© 2021 AOMB33EOA: Evolutionary Optimization Algorithms — 14 / 44

Genotype-Phenotype Mapping Process: Example
Grammar in BNF: P={ <expr> u= <expr><op><expr> (0)
| <pre-op>(<expr>) (1)
N = {<expr>, <op>, <pre-op>} | X @
T = {+,-,%,/,sin, cos, exp, log,X, (,) } <op> u= + (0)
S = <expr> | - 1)
| = 03
| 7/, ©)
<pre-op> := sin 0)
| cos (1)
| exp 03
| log @ 3}
Chromosome: 649358862
S: <expr>
<expr> —> 6mod3=0 — <expr><op><expr>
<expr><op><expr> — 4mod3=1 — <pre-op>(<expr>)<op><expr>
<pre-op>(<expr>)<op><expr> — 9mod4=1 — cos(<expr>)<op><expr>
cos (<expr>) <op><expr> —> 3mod3=0 — cos(<expr><op><expr>)<op><expr>
cos (<expr><op><expr>)<op><expr> — 5mod3 =2 — cos(X<op><expr>)<op><expr>
cos (X<op><expr>)<op><expr> —> 8mod4=0 — cos(X+<expr>)<op><expr>
cos (X+<expr>)<op><expr> — 8mod3=2 — cos(X+X)<op><expr>
cos (X+X) <op><expr> — 6mod4=2 — cos(X+X)*<expr>
cos (X+X) *<expr> — 2mod3=2 — cos(X+X)*X
The resulting “program”: x cos(2x)
P. Posik (© 2021 AOMB33EOA: Evolutionary Optimization Algorithms —15 / 44

Grammatical Evolution: 1-point Crossover

= It is more exploratory than the subtree crossover used in
GP.

m It transmits on average half of the genetic material for
each parent,

= It is equally recombinative regardless of the size of the
individuals involved. (The subtree crossover exchanges
less and less genetic material as the trees are growing.)

m It is less likely to get trapped in a local optimum than the
subtree crossover.

Parent 1: 649358862
Parent2:935|6848

(*)
()
OO

Ripple effect: a single crossover event can remove any number of subtrees to the right of the crossover point.

O

The head sequence of codons does not change its meaning, while the tale sequence may or may not change its interpretation (the
function of a gene depends on the genes that precede it) implying a limited exploitation capability of the recombination operation.

Offspring 1: 6496 8 4

Interpretation of
head part
649
remains invariant

Interpretation of
tail part
6848
changes

P. Posik (© 2021

AOMBS33EOA: Evolutionary Optimization Algorithms — 16 / 44

Grammatical Evolution: Evolutionary Algorithm

strings could be employed.
m Grammatical Differential Evolution,

m Grammatical Swarm,

Typically, the search is carried out by an EA. However, any search method with the ability to operate over variable-length binary

P. Pogik © 2021

AOMB33EOA: Evolutionary Optimization Algorithms —17 / 44

}

Grammatical Evolution for Symbolic Regression

Grammar used by GE for SR:
N = {<expr>, <op>, <pre-op>,<var>}
T = {+,-,%,/,sin, cos,exp, log,X,1.0,(,) }
S = <expr>
P—{
<expr> u= <expr><op><expr> (0)
| (<expr><op><expr>) (1)
| <pre-op>(<expr>) (2)
| <var>, 3)
<op> u= + 0)
| - M)
|/ @
| = @)
<pre-op> := sin ©0)
| cos)]
| exp @
| log ®)
<var> = X 0)
| 1.0, 1)

P. Pogik © 2021

AOMB33EOA: Evolutionary Optimization Algorithms —18 / 44

Experimental

setup:

Grammatical Evolution for Symbolic Regression

Objective :

Find a function of one independent variable and
one dependent variable, in symbolic form

that fits a given sample of 20 (z;, ;)

data points, where the target function is the
quartic polynomial X*+ X? + X2 + X

Terminal Operands:

X (the independent variable}, 1.0

Terminal Operators

The binary operators +, %, /, and —
The unary operators Sin, Cos, Exp and Log

Fitness cases

The given sample of 20 data points in the
interval [—1,+1] ie. {-1,-.9,-.8 -.76, -.72, -.68, -.64,
-4,-.2,0,.2, 4, .63,.72, .81, .90, .93, .96, .99, 1 }

Raw Fitness

The sum, taken over the 20 fitness cases,
of the error

Standardised Fitness

Same as raw fitness

Wrapper Standard productions to generate
C functions
Parameters Population Size = 500, Termination when Generations = 51

Prob. Mutation = 0.01, Prob. Crossover = 0.9
Prob. Duplication = 0.01

P. Pogik © 2021

AOMB33EOA: Evolutionary Optimization Algorithms —19 / 44

Grammatical Evolution for Symbolic Regression
Results: GE compared to standard GP.
Symbolic Regression
B ¥
P
‘X'—
d GPF ——
GE -
L‘%
;
3 .
o v Il A 1 1 L 1 I L
© 5 10 15 20 25 30 35 40 45 50
Generation
® GE successfully found the target function.
m GP outperforms GE: this might be attributed to more “careful” initialization of the initial population in the GP.

P. Posik (© 2021 AOMBS33EOA: Evolutionary Optimization Algorithms —20 / 44

Grammatical Evolution for Artificial Ant Problem
Ant capabilities /Start

m detection of the food right in front of him in direction he
faces.

[T
NN

LT

%7
2

m actions observable from outside i

m MOVE - makes a step and eats a food piece if there is 1

some, O
m LEFT - turns left, 24
® RIGHT - turns right,
= NOP - no operation.

N B

N

I
|

A

I

A\ AN

N | I
N\ \‘\<<f\\\l%lll{

Goal: find a strategy that navigates an ant through the grid so that it finds all the food pieces in the given time (600 time steps).

Santa Fe trail
m 32 x 32 toroidal grid with 89 food pieces.
m Obstacles: 1x,2x strait; 1x, 2x, 3x right/left.

P. Posik (© 2021 AOMB33EOA: Evolutionary Optimization Algorithms —21 / 44

10

Grammatical Evolution for Artificial Ant Problem
The grammar used by GE for Artificial Ant:
N = {<code>, <line>, <if-statement>, <action>}
T = {left(),right (), move (), food_ahead(),if,else,{,}, (,),;}
S = <code>
P={
<code> := <line> 0)
| <code><line> 1)
<line> := <if-statement> (0)
| <action> (1)
<if-statement> := if (food_ahead()) { (0)
<line>
} else {
<line>
action u= left(); (0)
| right(Q); 1)
| move(); ?2)
}

P. Posik (© 2021

AOMBS33EOA: Evolutionary Optimization Algorithms —22 / 44

Experimental setup:

Grammatical Evolution for Artificial Ant Problem

Objective :

Find a computer program to control an artificial ant so that it can
find all 89 pieces of food located on the Santa Fe Trail.

Terminal Operators:

left(), right(), move(), food_ahead()

Terminal Operands:

None

Fitness cases

One fitness case

Raw Fitness

Number of pieces of food before the ant times out
with 600 operations.

Standardised Fitness

Total number of pieces of food less the raw fitness.

Wrapper

None

Parameters

Population Size = 500, Termination when Generations = 51
Prob. Mutation = 0.01, Prob. Crossover = 0.9
Prob. Duplication = 0.01

P. Posik (© 2021

AOMBS33EOA: Evolutionary Optimization Algorithms —23 / 44

11

Grammatical Evolution for Artificial Ant Problem
GE was successful at finding a solution to the Santa Fe trail. Sama Fe Tran
100 T T
m Solutions have a form of a multiline code: aF -
move() ; e
left(); w0 |- s |
if (food.ahead()) { e
left(); A
} else { e
right(); g er 4 1
i
right(; £ s
if (food-ahead()) { E L / 1
move() ; Vi
} else { #
left(); /
} 20 -){ -
m Each solution is executed in a loop until the number of time steps allowed e
is reached. L
GE outperforms GP: ST Pt
m The top figure shows the performance of GP using a solution length 100 —— =
constraint component in the fitness measure. oE
m The bottom figure shows the performance of GP without the constraint on x
the solution length. 8o /x» b
/x/’
g o :
£
£ s
i
3 a0 f B
/
20 ,‘/" -
")t’
° 5 I.D 1'5 2‘0 25 30 35 4'0 4'5 S0
Generation
P. Posik (© 2021 AOMB33EOA: Evolutionary Optimization Algorithms —24 / 44

Grammatical Evolution and Automatically Defined Functions
Many options to employ ADFs in GE, e.g.:
1. Grammatical Evolution by Grammatical Evolution or meta-Grammar GE (GE)2
m The input grammar is used to specify the construction of another syntactically correct grammar, which is then used in a
mapping process to construct a solution.
2. GE grammar with the ability to define one ADF.
3. GE grammar with the ability to define any number of ADFs.

P. Posik (© 2021 AOMBS33EOA: Evolutionary Optimization Algorithms —25 / 44

12

GE Grammar with Multiple ADFs

Main program definition

<prog> ::= "public Ant() { while(get Energy() > 0) {'} }

<adfs> ::= <adf def> | <adf def> <adfs»> ADES’ definitions
<adf def> ::= " public void adfx() {"<adfcode>"}"

<code> ::= <line> | <code> <line>

<line> ::= <condition> | <op>

<condition> ::= "if (food_ahead()==1) {"<line>"} else {"<line>"}"

<op> = adfx();

<adfcode> = <adfline> | <adfcode> <adflines>

<adfline> = <adfcondition> | <adfop>

<adfconditions> ::= "if (food_ahead()==1) {"<adfline>"} else {"<adflines>"}"
<adfop> v:= left() s || right(); | movel();

A number of ADFs can be generated via the non-terminal <adfs> using the chromosome.

adf* () is expanded to enumerate all the allowed ADFs.

P. Posik (© 2021 AOMB33EOA: Evolutionary Optimization Algorithms —26 / 44

GE with ADFs: Results on Santa Fe Ant Trail

Irrespective of the ADF representation, the presence of ADFs alone is sufficient to significantly improve performance of the GE.

60 # ﬂ -
:I
4%
!_.
50F ' -
i
] o P

Eaorly
N | Ll
T YeEg jii-fr

30 F i BT 4L ' T [
EEEE]*%E _E ! !
. B TT 44 L ET11-

i1t Mo m e g Ll

20 + 1] : A A
SN | | THEE:

3 i

10 3 R

| 4Ll T4 d 0 |

10 20 50

Generation
P. Posik (© 2021 AOMBS33EOA: Evolutionary Optimization Algorithms —27 / 44

13

Cartesian Genetic Programming 28 / 44

Cartesian Genetic Programming
Cartesian Genetic Programming (CGP) [Mill1]
m A GP technique evolving programs in the form of directed graphs.
m The genotype is a list of integers that represent the program primitives and their connections.
m The genotype usually contains many non-coding genes.
m The genes are

= addresses in data (connection genes),
= addresses in a look up table of functions.

m The representation is very simple, flexible and convenient for many problems.

[Mil11] Julian Francis Miller, editor. Cartesian Genetic Programming. Springer, 2011.

P. Posik (© 2021 AOMB33EOA: Evolutionary Optimization Algorithms —29 / 44

CGP Node

CGP program is a set of interconnected nodes.

A CGP node contains

m function symbol (specifies the operation performed by the node), and
m connections (pointers toward nodes providing input for the function of the node).

Each CGP node has an output with its unique number assigned that may be used as an input for another node.

Connection,

. Function

TR memva Node number
Connection,

P. Posik (© 2021 AOMB33EOA: Evolutionary Optimization Algorithms —30 / 44

14

CGP General Form

CGP is Cartesian in the sense that the graph nodes are placed in Cartesian coord. system

Each CGP program is defined by

node
¢ columns
/ \ = number of rows 7,
. - m outputs ® number of columns c,

. : o = number of inputs 7,
. Ougln = number of outputs m,
o Clotr b

] o O = number of functions f,

y ntr+ S n+(c-1)r+ - . . .

n inputs - fres ! = maximum arity of function a,
® nodes interconnectivity I.

n1 Ceno

o @ 2r-1 +cr 1
/ i '
ILeveIs—back I

Nodes in the same column are not allowed to be connected to each other.

The nodes interconnectivity defines the maximum distance (in terms of the number of columns) between two connected nodes.
= If equal to 1, each node can be connected only with nodes in the previous column.
= If equal to ¢, each node can be connected to any other node in the previous columns.

P. Posik (© 2021 AOMB33EOA: Evolutionary Optimization Algorithms — 31 / 44

CGP: Variety of Graphs

Depending on 7, c and I a wide range of graphs can be generated.

OO0 e ol -
D00

O O O 4

X) | O

The length of the genotype (i.e. the maximum size of the CGP program) is fixed, however the actual size and structure of the
program can vary.

303

The most general choiceis ¥ =1and [= c:

Py
m Arbitrary directed graphs can be created with a :
maximum depth.)
m Suitable when no prior knowledge about the solution is 5
available. -
»
P. Posik (© 2021 AOMBS33EOA: Evolutionary Optimization Algorithms — 32 / 44

15

CGP Genotype
: Output genes
function genes putg
fO C00 COa f(c-1)r C(c-1)r 0:-- C(c-1)r a 01""0”‘
Connection genes
Usually, all functions have as many inputs as the maximum function arity.
Unused connections are ignored.
P. Posik (© 2021 AOMB33EOA: Evolutionary Optimization Algorithms — 33 / 44

CGP Program Example
CGP program with 3 x 4 architecture, 3 inputs and 1 output.

= number of rows r =3 = number of outputs m =1

= number of columns ¢ = 4 = number of functions f =5

= number of inputs n =3 = maximum arity of function a = 2

l { 1 10 Look up table of 5 functions:
: 3 = : 3 = : 4 — : 2 T 0 + Add theargl toarg2
2 = 4 ¢ 8 ? 7 & 1 - Subtract arg2 from argl

0 2 * Multiply argl to arg2
- 2 4 (0 3 / Divide argl by arg2

1 =1 1 = -1 0 = -1 1 1 o = 3 4 sin Calculate sin of argl
- n -)4 3 - |7 Al |10 T -3

The chromosome represents function y = xq +

- sin xq
Xp —

P. Posik (© 2021 AOMBS33EOA: Evolutionary Optimization Algorithms — 34 / 44

16

CGP: Algorithm
Classic form of CGP uses a variant of (1+ A)-EA

= with a point mutation variation operator;
= usually A =4.

(14 A)-EA:

Generate a random solution S

While not stopping criterion do
Generate A mutated versions of S
Replace S by the best individual individual out of the A new solutions
iff it is not worse than S.

5. Return S as the best solution found

Ll N

Neutral search:

m The algorithm accepts moves to new states of the solution space (step 4) that do not necessarily improve the quality of the
current solution.

= This allows an introduction of new pieces of genetic code that can be plugged into the functional code later on.

If only improving steps are allowed then the search would not be neutral.

P. Posik (© 2021 AOMBS33EOA: Evolutionary Optimization Algorithms — 35 / 44

CGP: Point Mutation

Silent mutations and their effects:

Original Xo+ X1
; * : e x C
‘ i yz/y Xo + X1

No change in
phenotype but it
changes the

001 100 131 201 254 257 programbsl
: accessiole
After gllent through
mutation subsequent

mutational change

P. Posik (© 2021 AOMB33EOA: Evolutionary Optimization Algorithms — 36 / 44

17

CGP: Point Mutation

Non-silent mutations and their effects:

Original

Massive
: change in
001 100 131 201 254 2 57
Aft?rtgctlve 001 100 131 2 2 phenotype
mutation ¢ i i
0 ;) > is possible
@ @ -2x, through
; : : simple
X0 L N s e s
— T mutation
X1 -Xxg * '\.12
0
100 131 201 044 254 6 57
P. Posik (© 2021 AOMB33EOA: Evolutionary Optimization Algorithms — 37 / 44

CGP: Evolutionary Design of Boolean Circuits

CGP for evolution of 3x4-bit multiplier
= F = {AND, OR, XOR, Wire-Jumper}
u T:{ﬂo,‘.‘,ﬂg,bg,“.,bQ}
= (1+4)-EA
s r=10,c=7,1=7

18

P. Posik (© 2021 AOMBS33EOA: Evolutionary Optimization Algorithms — 38 / 44

19

CGP: Evolutionary Design of Boolean Circuits

CGP for evolution of 7-bit sorting network
m F = {Compare&Swap, Wire-Jumper } realized by AND-OR units
s T={ap,..., a6}
= (1+4)-EA
mr=7c=81=8

P. Pogik © 2021

AOMB33EOA: Evolutionary Optimization Algorithms —39 / 44

CGP: Evolutionary Design of Boolean Circuits

7-bit sorting network found by the CGP from previous slide realized by 16 C&S operations

s

O

1o
:

-
T

o——0

h h = ka = O

O—0 0—0 0—0

4

P. Pogik © 2021

20

AOMB33EOA: Evolutionary Optimization Algorithms —40 / 44

CGP: Summary

Application areas

Pros/cons:

Digital Circuit Design — parallel multipliers, digital filters, analogue circuits

Mathematical functions

Control systems — Maintaining control with faulty sensors, helicopter control, simulated robot controller
Artificial Neural Networks — Developmental Neural Architectures

Image processing — Image filters

(+) Flexible program representation — genotype-phenotype mapping allows for a neutral evolution
(+) Fixed genotype size but variable size and structure of the programs

(+) Explicit automatic code reuse

(+) Allows for an evolution of modules

(-) Does not allow for multi level hierarchy in the ADFs

P. Posik (© 2021 AOMBS33EOA: Evolutionary Optimization Algorithms —41 / 44

Summary 42 / 44

Learning outcomes

After this lecture, a student shall be able to

® implement a variable-length linear representation and a genotype-phenotype mapping used in GE;
= describe a representation of a program in CGP in the form of a directed graph;
= explain the neutral mutations in GE and CGP and their effect on the search process;
m describe the ripple crossover in GE;
= write a high-level pseudocode of GE and CGP;
= implement a concept of automatically defined functions into GE (Grammatical Evolution or meta-Grammar GE, GE grammar
with the ability to define one more ADFs);
m explain the explicit automatic code reuse in CGP;
P. Posik (© 2021 AOMBS33EOA: Evolutionary Optimization Algorithms —43 / 44

21

References
Grammatical Evolution

[OR01] M. O'Neill and C. Ryan. Grammatical evolution. IEEE Transactions on Evolutionary Computation, 5(4):349-358, 2001.

[PLMO8] Riccardo Poli, William B. Langdon, and Nicholas F. Mcphee. A Field Guide to Genetic Programming. Lulu Enterprises, UK
Ltd, March 2008.

[RCO98] Conor Ryan, J. J. Collins, and Michael O’'Neill. Grammatical evolution: Evolving programs for an arbitrary language. In
Proceedings of the First European Workshop on Genetic Programming, volume 1391, pages 83-95, Paris, 1998. Springer-Verlag.

Cartesian Genetic Programming
[Mil11] Julian Francis Miller, editor. Cartesian Genetic Programming. Springer, 2011.

[MT15] Julian Miller and Andrew Turner. Cartesian genetic programming. In Proceedings of the Companion Publication of the 2015
Annual Conference on Genetic and Evolutionary Computation, GECCO Companion 15, page 179-198, New York, NY, USA,

2015. Association for Computing Machinery.

P. Posik (© 2021 AOMB33EOA: Evolutionary Optimization Algorithms —44 / 44

22

	Introduction
	Closure property
	Closure constraint
	STGP

	Grammatical Evolution
	Grammatical Evolution
	BNF
	Mapping
	Modulo rule
	Wrapping
	Mapping: Example
	Crossover
	GE Engine
	GE4SR
	GE4Ant
	ADFs

	Cartesian Genetic Programming
	CGP Intro
	CGP Node
	Genotype
	CGP Program Example
	CGP: Algorithm
	CGP: Point Mutation
	CGP: Evolutionary Design of Boolean Circuits

	Summary
	Learning outcomes
	References

