CZECH TECHNICAL UNIVERSITY IN PRAGUE
Faculty of Electrical Engineering
Department of Cybernetics

A0M33EOA
 Genetic Programming

Petr Pošík

Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Cybernetics

Heavilly using slides from Jiří Kubalík, CIIRC CTU, with permission.

Introduction to Genetic Programming

Contents

- Genetic Programming introduction
- Solving the artificial ant by GP

GP Intro

- Strongly typed GP
- Contents
- Applications
- Representation
- Crossover
- Mutation
- Constants
- Trig. identity
- Ant
- Fuzzy rules
- STGP

GP Operators

- Initialization
- Crossover operators
- Automatically Defined Functions

Genetic Programming (GP)

GP shares with GA
■ the philosophy of survival and
GP Intro

- Contents
- Applications
- Representation
- Crossover
- Mutation
- Constants
- Trig. identity
- Ant
- Fuzzy rules
- STGP

GP Operators
Summary reproduction of the fittest and

- the analogy of naturally occurring genetic operators. representing an algorithm/ computer program.

GA chromosome of fixed length:

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}

GP differs from GA in

- a representation,
- genetic operators and
- the scope of applications.

Structures evolved in GP are (usually trees) dynamically varying in size and shape,

GP trees:

\qquad

- Contents
- Applications
- Representation
- Crossover
- Mutation
- Constants
- Trig. identity
- Ant
- Fuzzy rules
- STGP

GP Operators Summary

GP: Representation

Many possible representations; here we focus on trees composed of

- terminals:
- inputs to the program (independent variables),
- real, integer or logical constants,
- actions,...

Example: Tree representation of a
LISP S-expression
$0.23 * Z+X-0.78$
and

- functions:

■ arithmetic operators (+,-,*, /),

- algebraic functions (sin, cos, exp, log),
- logical functions (AND, OR, NOT),
- conditional operators (If-Then-Else, cond ? true : false),
cond? true : false),

\qquad
- Contents
- Applications
- Representation
- Crossover
- Mutation
- Constants
- Trig. identity
- Ant
- Fuzzy rules
- STGP

GP Operators
Summary

GP: Representation

Many possible representations; here we focus on trees composed of

- terminals:
- inputs to the program (independent variables),
- real, integer or logical constants,
- actions,...

Example: Tree representation of a
LISP S-expression
$0.23 * Z+X-0.78$
and

- functions:

■ arithmetic operators (+,-,*, /),

- algebraic functions (sin, cos, exp, log),
- logical functions (AND, OR, NOT),
- conditional operators (If-Then-Else, cond ? true : false),

Functions
Terminals

Closure property: each of the functions should be able to accept, as its argument, any value that may be returned by any function and any terminal.

GP: Crossover

Subtree crossover

1. Randomly select a node (crossover point) in each parent tree.
GP Intro
Application

- Representation
- Crossover
- Mutation
- Constants
- Trig. identity
- Ant
- Fuzzy rules
- STGP

2. Create offspring by exchanging the subtrees rooted at the crossover nodes.

Parent 1: $Z^{*} Y^{*}\left(Y+0.31^{*} Z\right)$

Child 1: $0.23^{*} Y^{*} Z^{\wedge} 2$

Parent 2: $0.23^{*} Z+X-0.78$

Child 2: $\mathrm{Y}+0.31^{*} \mathrm{Z}+\mathrm{X}-0.78$

GP Operators

Crossover points do not have to be selected with uniform probability

- Typically, the majority of nodes in the trees are leaves, because the average branching factor (the number of children of each node) is ≥ 2.
- To avoid swapping leave nodes most of the time, the widely used crossover scenario chooses function nodes 90% of the time and leaves 10% of the time.

GP: Mutation

Subtree mutation

1. Randomly select a mutation point from the set of all nodes in the parent tree.

GP Intro

- Contents
- Applications
- Representation
- Crossover
- Mutation
- Constants
- Trig. identity
- Ant
- Fuzzy rules
- STGP

GP Operators
2. Replace the subtree rooted at the chosen node with a new randomly generated subtree.

Point mutation

1. Randomly select a mutation point from the set of all nodes in the parent tree.
2. Replace the primitive stored in the selected node with a different primitive of the same arity taken from the primitive set.

GP Intro

- Contents
- Applications
- Representation
- Crossover
- Mutation
- Constants
- Trig. identity
- Ant
- Fuzzy rules
- STGP

GP Operators
Summary

GP: Constant Creation

In many problems exact real-valued constants are required to be present in the correct solution (evolved program tree) \Longrightarrow GP must have the ability to create arbitrary real-valued constants.

Ephemeral random constant (ERC) \mathfrak{R} is a special terminal.

- Initialization:
- Whenever an ERC is chosen for any endpoint of the tree during the initialization, a random number of a specified data type in a specified range is generated and attached to the tree at that point.
- Each occurrence of this terminal symbol invokes a generation of a unique value.
- After initialization:
- Many different constants can be found in the trees.
- These constants remain fixed during evolution.
- Other constants can be evolved by mixing the existing subtrees, being driven by the goal of improving the overall fitness.
- The pressure of fitness function determines both the directions and the magnitudes of the adjustments in numerical constants.

GP Intro

- Contents
- Applications
- Representation
- Crossover
- Mutation
- Constants
- Trig. identity
- Ant
- Fuzzy rules
- STGP

GP Operators Summary

GP: Trigonometric Identity

Task: find an expression equivalent to $\cos (2 x)$.

GP setup:

- Terminal set: $T=\{x, 1\}$.
- Function set: $F=\{+,-, *, \%, \sin \}$.
- Training cases: 20 pairs $\left(x_{i}, y_{i}\right)$, where x_{i} are values evenly distributed in interval $(0,2 \pi)$.
- Fitness: Sum of absolute differences between desired y_{i} and the values returned by generated expressions.
- Stopping criterion: A solution found that gives the error less than 0.01.

GP Intro

- Contents
- Applications
- Representation
- Crossover
- Mutation
- Constants
- Trig. identity
- Ant
- Fuzzy rules
- STGP

GP Operators Summary

Example of GP in Action: Trigonometric Identity

Run 1, $13^{\text {th }}$ generation

$$
(-(-1(*(\sin x)(\sin x)))(*(\sin x)(\sin x)))
$$

which equals (after editing) to $1-2 \sin ^{2} x$.

Run $2,34^{\text {th }}$ generation

$$
(-1(*(*(\sin x)(\sin x)) 2))
$$

which is another way of writing the same expression.

Run 3, $30^{\text {th }}$ generation

```
(sin (- (- 2 (* x 2))
    (\operatorname{sin}(\operatorname{sin}(\operatorname{sin}(\operatorname{sin}(\operatorname{sin}(\operatorname{sin}(*)(\operatorname{sin}(\operatorname{sin}1))
        (sin (sin 1)))))))))))
```

■ The subtree $\sin (\sin (\ldots$. evaluates to 0.433 .

- The expression is thus $\sin (2-2 x-0.433)$.
- $2-0.433 \doteq \frac{\pi}{2}$.
- The discovered identity is $\cos (2 x)=\sin \left(\frac{\pi}{2}-2 x\right)$.

GP: Symbolic Regression

Task: find a function that fits the training data evenly sampled from interval $\langle-1.0,1.0\rangle$, $f(x)=x^{5}-2 x^{3}+x$.

GP Intro

- Contents
- Applications
- Representation
- Crossover
- Mutation
- Constants
- Trig. identity
- Ant
- Fuzzy rules
- STGP

GP Operators

GP setup:

- Terminal set $T=\{x\}$.
- Function set $F=\{+,-, *, \%, \sin , \cos \}$.
- Training cases: 20 pairs $\left(x_{i}, y_{i}\right)$, where x_{i} are values evenly distributed in interval $\langle-1,1\rangle$.
■ Fitness: Sum of errors calculated over all $\left(x_{i}, y_{i}\right)$ pairs.
- Stopping criterion: A solution found that gives the error less than 0.01.

GP: Symbolic Regression

Task: find a function that fits the training data evenly sampled from interval $\langle-1.0,1.0\rangle$, $f(x)=x^{5}-2 x^{3}+x$.

- Contents
- Applications
- Representation
- Crossover
- Mutation
- Constants
- Trig. identity
- Ant
- Fuzzy rules
- STGP

GP Operators
Summary

GP setup:

- Terminal set $T=\{x\}$.
- Function set $F=\{+,-, *, \%, \sin , \cos \}$.
- Training cases: 20 pairs $\left(x_{i}, y_{i}\right)$, where x_{i} are values evenly distributed in interval $\langle-1,1\rangle$.
- Fitness: Sum of errors calculated over all $\left(x_{i}, y_{i}\right)$ pairs.
- Stopping criterion: A solution found that gives the error less than 0.01.

Besides the desired function other three were found

- with a very strange behavior outside the interval of training data,
- though optimal with respect to the defined fitness.

GP Intro

- Contents
- Applications
- Representation
- Crossover
- Mutation
- Constants
- Trig. identity
- Ant
- Fuzzy rules
- STGP

GP Operators
Summary

Artificial Ant Problem

Santa Fe trail

- 32×32 grid with 89 food pieces.
- Obstacles
- $1 \times, 2 \times$ strait,
- $1 \times, 2 \times, 3 \times$ right $/$ left.

Ant capabilities

- detects the food right in front of him in direction he faces.

■ actions observable from outside

- MOVE: makes a step and eats a food piece if there is some,

- LEFT: turns left,
- RIGHT: turns right,
- NO-OP: no operation.

Goal: find a strategy that navigates an ant through the grid so that it finds all the food pieces in the given time (600 time steps).

Artificial Ant Problem: GP Approach

Terminals (ant actions):

- $\mathrm{T}=\{$ MOVE, LEFT, RIGHT $\}$.

GP Intro

- Contents
- Applications
- Representation
- Crossover
- Mutation
- Constants
- Trig. identity
- Ant
- Fuzzy rules
- STGP

GP Operators

Functions:

- conditional IF-FOOD-AHEAD: food detection, 2 arguments,
- unconditional PROG2, PROG3: sequence of $2 / 3$ actions.

Ant repeats the program until time runs out (600 time steps) or all the food has been eaten.

Artificial Ant Problem: GP Approach

Terminals (ant actions):

- $\mathrm{T}=\{$ MOVE, LEFT, RIGHT $\}$.

GP Intro

- Contents
- Applications
- Representation
- Crossover
- Mutation
- Constants
- Trig. identity
- Ant
- Fuzzy rules
- STGP

GP Operators
Summary

Functions:

- conditional IF-FOOD-AHEAD: food detection, 2 arguments,
- unconditional PROG2, PROG3: sequence of $2 / 3$ actions.

Ant repeats the program until time runs out (600 time steps) or all the food has been eaten.

Typical solutions in the initial population:

■ (PROG2 (RIGHT) (LEFT))
completely fails to fin and eat any food.

- (IF-FOOD-AHEAD (LEFT) (RIGHT))
does nothing useful either.
- (PROG2 (MOVE) (MOVE))
finds a few pieces of food by chance.

GP Intro

- Contents
- Applications
- Representation
- Crossover
- Mutation
- Constants
- Trig. identity
- Ant
- Fuzzy rules
- STGP

GP Operators
Summary

Artificial Ant Problem: GP Approach (cont.)

More interesting solutions from the initial population:

- Quilter performs systematic exploration of the grid:

```
(PROG3 (RIGHT)
    (PROG3 (MOVE) (MOVE) (MOVE))
    (PROG2 (LEFT) (MOVE)))
```

- Tracker perfectly tracks the food until the first obstacle occurs, then it gets trapped in an infinite loop.
(IF-FOOD-AHEAD (MOVE) (RIGHT))

Tracker performance

Artificial Ant Problem: GP Approach (cont.)

- Avoider perfectly avoids food!!!
(I-F-A (RIGHT)
(I-F-A (RIGHT)
(PROG2 (MOVE) (LEFT))))
Average fitness in the initial population is 3.5.

Avoider performance

Artificial Ant Problem: GP result

In generation 21, the following solution was found:
(IF-FOOD-AHEAD (MOVE)
GP Intro

- Contents
- Applications
- Representation
- Crossover
- Mutation
- Constants
- Trig. identity
- Ant
- Fuzzy rules
- STGP
(PROG3 (LEFT)
(PROG2 (IF-FOOD-AHEAD (MOVE)
(RIGHT))
(PROG2 (RIGHT)
(PROG2 (LEFT)
(RIGHT))))
(PROG2 (IF-FOOD-AHEAD (MOVE)
(LEFT))
(MOVE))))
GP Operators
Summary
■ It navigates the ant so that it eats all 89 food pieces in the given time.
- The program solves every trail with obstacles of the same type as occur in Santa Fe trail.

Compare the computational complexity with the GA approach!!!
GA approach: $\quad 65.536 \times 200=13 \times 10^{6}$ trials.
GP approach: $500 \times 21=10.500$ trials.

Syntax-preserving GP: Evolving Fuzzy-rule based Classifier

Classifier consists of fuzzy if-then rules of type
If ($x 1$ is medium $)$ and ($x 3$ is large) then class $=1$ with $c f=0.73$
GP Intro

- Contents
- Applications
- Representation
- Crossover
- Mutation
- Constants
- Trig. identity
- Ant
- Fuzzy rules
- STGP

GP Operators
Summary

GP Intro

- Contents
- Applications
- Representation
- Crossover
- Mutation
- Constants
- Trig. identity
- Ant
- Fuzzy rules
- STGP

GP Operators
Summary

Syntax-preserving GP: Evolving Fuzzy-rule based Classifier

Classifier consists of fuzzy if-then rules of type
If ($x 1$ is medium $)$ and ($x 3$ is large) then class $=1$ with $c f=0.73$

- Linguistic terms: small, medium small, medium, medium large, large.
- Fuzzy membership functions: approximate the confidence in that the crisp value is represented by the linguistic term.

Three rules connected by OR

Blind crossover and mutation operators can produce incorrect trees that do not represent valid rule base.

- Obviously due to the fact that the closure property does not hold here.
- What can we do?

Syntax-preserving GP: Strongly Typed GP

Strongly typed GP: crossover and mutation explicitly use the type information:

- every terminal has a type,

GP Intro

- Contents
- Applications
- Representation
- Crossover
- Mutation
- Constants
- Trig. identity
- Ant
- Fuzzy rules
- STGP

GP Operators
Summary

- every function has types for each of its arguments and a type for its return value,

■ the genetic operators are implemented so that they do not violate the type constraints \Longrightarrow only type correct solutions are generated.

Example: Given the representation as specified below, consider that we chose IS node (with return type 1) as a crossing point in the first parent. Then, the crossing point in the second parent must be either IF or AND node.

F/T	Output	Input
OR	0	0,0
IF	0	$1,2,3$
AND	1	1,1
IS	1	None
CLASS	2	None
CF	3	None

STGP can be extended to more complex type systems - multi-level and polymorphic higher-order type systems.

GP Operators

GP Intro GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

Required characteristics:

- Computationally light; optimally linear in tree size.
- User control over expected tree size.
- User control over specific node appearance in trees.

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

GP Initialisation: Simple Methods

D is the maximum initial depth of trees, typically between 2 to 6 .

Full method:

- Each branch has depth $d=D$.
- Nodes at depth $d<D$ randomly chosen from function set F.
- Nodes at depth $d=D$ randomly chosen from terminal set T.

Grow method:

- Each branch has depth $d \leq D$.
- Nodes at depth $d<D$ randomly chosen from $F \cup T$.

$$
4+2
$$

- Nodes at depth $d=D$ randomly chosen from T.

Ramped half-and-half:

- Grow \& full method each deliver half of the initial population.
- A range of depth limits is used to ensure that trees of various sizes and shapes are generated.

GP Initialisation: Simple Methods

Characteristics of Grow and Full methods:

- No size parameter: they do not allow the user to create a population with a desired size distribution.
GP Operators
- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

GP Initialization: Probabilistic Tree-Creation Method

Probabilistic tree-creation method:

- An expected desired tree size can be defined.
- Probabilities of occurrence of individual functions and terminals within the generated trees can be defined.
- Fast - running in time near-linear in tree size.

Notation:

- T denotes a newly generated tree.
- D is the maximal depth of a tree.
- $E_{\text {tree }}$ is the expected tree size of \mathbf{T}.
- F is a function set divided into terminals T and nonterminals N.
- p is the probability that an algorithm will pick a nonterminal.
- b is the expected number of children to nonterminal nodes from N.
- g is the expected number of children to a newly generated node in \mathbf{T}.

$$
g=p b+(1-p)(0)=p b
$$

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary
PTC1 is a modification of Grow that trees will be of that size,

- probabilities q_{t} and q_{n} for each $t \in T$ and $n \in N$,
- arities b_{n} of all nonterminals $n \in N$,
the probability, p, of choosing a nonterminal over a terminal according to

$$
p=\frac{1-\frac{1}{E_{\text {tree }}}}{\sum_{n \in N} q_{n} b_{n}}
$$

Given

- maximum depth bound D,
- function set F consisting of N and T,
- expected tree size, $E_{\text {tree }}$,

GP Initialization: Probabilistic Tree-Creation Method 1

- allows the user to define probabilities of appearance of functions within the tree,
- gives user a control over expected desired tree size, and guarantees that, on average,
- does not give the user any control over the variance in tree sizes.

PTC1(depth d)

Returns: a tree of depth $d \leq D$
1 if $(d=D)$ return a terminal from T
(by q_{t} probabilities)
else if (rand $<p$)
choose a nonterminal n from N (by q_{n} probabilities)
for each argument a of n
fill a with $\operatorname{PTC} 1(d+1)$
return n
else return a terminal from T
(by q_{t} probabilities)

Probabilistic Tree-Creation Method PTC1: Proof of p

- The expected number of nodes at depth d is $E_{d}=g^{d}$ for $g \geq 0$ (the expected number of children to a newly generated node).

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

- $E_{\text {tree }}$ is the sum of E_{d} over all levels of the tree, that is

$$
E_{\text {tree }}=\sum_{d=0}^{\infty} E_{d}=\sum_{d=0}^{\infty} g^{d}
$$

From the geometric series, for $g \geq 0$

$$
E_{\text {tree }}= \begin{cases}\frac{1}{1-g}, & \text { if } g<1 \\ \infty, & \text { if } g \geq 1\end{cases}
$$

The expected tree size $E_{\text {tree }}$ (we are interested in the case that $E_{\text {tree }}$ is finite) is determined solely by g, the expected number of children of a newly generated node.

Probabilistic Tree-Creation Method PTC1: Proof of p

■ The expected number of nodes at depth d is $E_{d}=g^{d}$ for $g \geq 0$ (the expected number of children to a newly generated node).

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

- $E_{\text {tree }}$ is the sum of E_{d} over all levels of the tree, that is

$$
E_{\text {tree }}=\sum_{d=0}^{\infty} E_{d}=\sum_{d=0}^{\infty} g^{d}
$$

From the geometric series, for $g \geq 0$

$$
E_{\text {tree }}= \begin{cases}\frac{1}{1-g}, & \text { if } g<1 \\ \infty, & \text { if } g \geq 1\end{cases}
$$

The expected tree size $E_{\text {tree }}$ (we are interested in the case that $E_{\text {tree }}$ is finite) is determined solely by g, the expected number of children of a newly generated node.

- Since $g=p b$, given a constant, nonzero b (the expected number of children of a nonterminal node from N), a p can be picked to produce any desired g.

Thus, a proper value of g (and hence the value of p) can be picked to determine any desired $E_{\text {tree }}$.

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

Probabilistic Tree-Creation Method PTC1: Proof of p

- From

$$
E_{\text {tree }}=\frac{1}{1-p b}
$$

we get

$$
p=\frac{1-\frac{1}{E_{\text {tree }}}}{b}
$$

After substituting $\sum_{n \in N} q_{n} b_{n}$ for b we get

$$
p=\frac{1-\frac{1}{E_{\text {tree }}}}{\sum_{n \in N} q_{n} b_{n}}
$$

- User can bias typical bushiness of a tree by adjusting the occurrence probabilities of nonterminals with large fan-outs and small fan-outs, respectively.

Example: Nonterminal A has four children branches, nonterminal B has two children branches.

GP: Selection

Fitness-proportionate roulette wheel selection or tournament selection are commonly used.

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

Greedy over-selection:

- Recommended for complex problems that require large populations (>1000).
- Increases the selection probability of the fitter individuals in the population.
- Algorithm:
- Rank population by fitness and divide it into two groups:
- group I: the fittest individuals that together account for $x \%$ of the sum of fitness values in the population,
- group II: remaining less fit individuals.
- 80% of the time an individual is selected from group I in proportion to its fitness; 20% of the time, an individual is selected from group II.

■ For population size $=1000,2000,4000,8000, x=32 \%, 16 \%, 8 \%, 4 \%$. (\%'s come from a rule of thumb.)

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

GP: Selection

Fitness-proportionate roulette wheel selection or tournament selection are commonly used.

Greedy over-selection:

- Recommended for complex problems that require large populations (>1000).
- Increases the selection probability of the fitter individuals in the population.
- Algorithm:
- Rank population by fitness and divide it into two groups:
- group I: the fittest individuals that together account for $x \%$ of the sum of fitness values in the population,
- group II: remaining less fit individuals.
- 80% of the time an individual is selected from group I in proportion to its fitness; 20% of the time, an individual is selected from group II.

■ For population size $=1000,2000,4000,8000, x=32 \%, 16 \%, 8 \%, 4 \%$. (\%'s come from a rule of thumb.)

Example: Effect of greedy over-selection for the 6-multiplexer problem

Population size	$\mathrm{I}(\mathrm{M}, \mathrm{i}, \mathrm{z})$ without over-selection	$\mathrm{I}(\mathrm{M}, \mathrm{i}, \mathrm{z})$ with over-selection
1,000	343,000	33,000
2,000	294,000	18,000
4,000	160,000	24,000

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary \qquad
To remedy this deficiency in GP, genetic operators making use of the semantic information has been introduced:

- Semantically Driven Crossover (SDC) [BJ08]
- Semantic Aware Crossover (SAC) [UHO09]
[BJ08] Lawrence Beadle and Colin Johnson. Semantically driven crossover in genetic programming. In Jun Wang, editor, Proceedings of the IEEE World Congress on Computational Intelligence, CEC 2008, pages 111-116, Hong Kong, 2008. IEEE Computational Intelligence Society, IEEE Press.
[UHO09] Nguyen Quang Uy, Nguyen Xuan Hoai, and Michael O'Neill. Semantic aware crossover for genetic programming: The case for real-valued function regression. In EuroGP, volume 5481 of Lecture Notes in Computer Science, pages 292-302. Springer, 2009.

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

GP: Semantically Driven Crossover

- Applied to Boolean domains.
- The semantic equivalence between parents and their children is checked by transforming the trees to reduced ordered binary decision diagrams (ROBDDs). Trees are considered semantically equivalent if and only if they reduce to the same ROBDDs.

This eliminates two types of introns (code that does not contribute to the fitness of the program):

- Unreachable code: (IF A1 D0 (IF A1 (AND DO D1) D1))
- Redundant code: AND A1 A1

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

GP: Semantic Aware Crossover

- Applied to real-valued domains.
- Determining semantic equivalence between two real-valued expressions is NP-hard.
- Approximate semantics are calculated:
- Compared expressions are measured against a random set of points sampled from the domain.
■ Two trees, T1 and T2, are considered semantically equivalent if the output of the two trees on the random sample set S are close enough, subject to a parameter ε called semantic sensitivity, i.e., if

$$
\sum_{x \in S}|T 1(x)-T 2(x)|<\varepsilon .
$$

- Equivalence checking is used both for individual trees and subtrees.

■ Constraint crossover: encourage exchanging subtrees with different semantics.

- While the two subtrees chosen for exchange are semantically equivalent, the operator tries to choose different subtrees.

GP: Semantic Aware Crossover

Effects of semantic guidance on the crossover (SAC):

- SAC is more semantic exploratory than standard GP. It carries out much fewer

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary semantically equivalent crossover events than standard GP crossover.

- SAC is more fitness constructive than standard GP: the percentage of crossover events generating a better child from its parents is significantly higher in SAC.
- SAC increases the number of successful runs in solving a class of real-valued symbolic regression problem.
- SAC increases the semantic diversity of population.

Automatically Defined Functions: Motivation

Hierarchical problem-solving ("divide and conquer"):

- The solution to an overall problem may be found by decomposing it into smaller and

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary more tractable subproblems such that
■ the solutions of subproblems are reused many times in assembling the solution to the overall problem.

Automatically Defined Functions: Motivation

Hierarchical problem-solving ("divide and conquer"):

- The solution to an overall problem may be found by decomposing it into smaller and

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary more tractable subproblems such that

- the solutions of subproblems are reused many times in assembling the solution to the overall problem.

Automatically Defined Functions [Koz94]: idea similar to reusable code represented by subroutines in programming languages.

- The reuse eliminates the need to "reinvent the wheel" on each occasion when a particular sequence of steps may be useful.
- Subroutines are reused with different instantiation of dummy variables.
- The reuse makes it possible to exploit a problem's modularities, symmetries and regularities.
- Code encapsulation - protection from crossover and mutation.
- Simplification - less complex code, easier to evolve.
- Efficiency - acceleration of the problem-solving process (i.e., the evolution).

Automatically Defined Functions: Structure of Programs with ADFs

Function defining branches (ADFs): each ADF resides in a separate function-defining branch.

GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

Each ADF

- can have zero, one or more formal parameters (dummy variables),
- belongs to a particular individual (program) in the population,
- may be called by the program's result-producing branch(es) or other ADFs.

Typically, the ADFs are invoked with different instantiations of their dummy variables.

Result-producing branch (RPB): the "main" program (can be one or more).
Remarks:

- The RPBs and ADFs can have different function and terminal sets.
- ADFs as well as RPBs undergo the evolution through the crossover and mutation operations.

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

ADF: Symbolic Regression of Even-Parity Functions

Even-n-parity function of n Boolean arguments:

- Return true if the number of true arguments is even; return false otherwise.
- The function is uniquely specified by the value of the function for each of the 2^{n} possible combinations of its n arguments.

Exmaple: Even-3-parity: the truth table has $2^{3}=8$ rows.

	D2	D1	D0	Output
0	0	0	0	1
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Even-3-Parity Function: Blind Search vs. Simple GP

Experimental setup:

- Function set: $\mathrm{F}=\{\mathrm{AND}, \mathrm{OR}, \mathrm{NAND}, \mathrm{NOR}\}$

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

- The number of internal nodes fixed to 20.
- Blind search - randomly samples 10,000,000 trees
- GP without ADFs
- Population size $M=50$.
- A run is terminated as soon as it produces a correct solution.
- Total number of trees generated 10,000,000.

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

Even-3-Parity Function: Blind Search vs. Simple GP

Experimental setup:

- Function set: $\mathrm{F}=\{\mathrm{AND}, \mathrm{OR}, \mathrm{NAND}, \mathrm{NOR}\}$
- The number of internal nodes fixed to 20.
- Blind search - randomly samples 10,000,000 trees
- GP without ADFs
- Population size $M=50$.
- A run is terminated as soon as it produces a correct solution.
- Total number of trees generated 10,000,000.

Results: number of times the correct function appeared in 10,000,000 generated trees:

Blind search	0
GP without ADFs	2

Effect of using larger populations in GP:

Population size	50	100	200	500	1000
Ind. processed per solution	999,750	665,923	379,876	122,754	20,285

The performance advantage of GP over blind search increases with population size; it demonstrates the importance of a proper choice of the population size.

Observed GP Performance Parameters

Performance measures:

- $P(M, i)$: cumulative probability of success for all the generations between generation

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary 0 and i, where M is the population size.

- $I(M, i, z)$: number of individuals that need to be processed in order to yield a solution with probability z (here $z=99 \%$).

For the desired probability z of finding a solution by generation i at least once in R runs the following holds

$$
z=1-[1-P(M, i)]^{R}
$$

Thus, the number $R(z)$ of independent runs required to satisfy the success predicate by generation i with probability $z=1-\varepsilon$ is

$$
R(M, z, i)=\left(\frac{\log \varepsilon}{\log (1-P(M, i))}\right)
$$

And

$$
I(M, i, z)=M \cdot i \cdot R(M, z, i)
$$

GP without ADFs: Even-4-Parity Function

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

- Cumulative probability of success, $P(M, i)$, is 35% and 45% by generation 28 and 50 , respectively.
- The most efficient is to run GP up to the generation 28 - if the problem is run through to generation 28 , processing a total of

$$
4,000 \times 29 \text { generations } \times 11 \text { runs }=1,276,000
$$

individuals is sufficient to yield a solution with 99% probability.

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

GP without ADFs: Even-4-Parity Function

An example of solution with 149 nodes.

```
(AND (OR (OR (OR (NOR DO (NOR D2 D1)) (NAND (OR (NOR (AND
D3 D0) D2) (NAND DO (NOR D2 (AND D1 (OR D3 D2))))) D3))
(AND (AND D1 D2) DO)) (NAND (NAND (NAND D3 (OR (NOR DO
(NOR (OR D3 D2) D2)) (NAND (AND (AND (AND D3 D2) D3) D2)
D3))) (NAND (OR (NAND (OR DO (OR DO D1)) (NAND DO D1))
D3) (NAND D1 D3))) D3)) (OR (OR (NOR (NOR (AND (OR (NOR
D3 DO) (NOR (NOR D3 (NAND (OR (NAND D2 D2) D2) D2)) (AND
D3 D2))) D1) (AND D3 D0)) (NOR D3 (OR DO D2))) (NOR D1
(AND (OR (NOR (AND D3 D3) D2) (NAND DO (NOR D2 (AND D1
DO)))) (OR (OR DO D3) (NOR DO (NAND (OR (NAND D2 D2) D2)
D2)))))) (AND (AND D2 (NAND D1 (NAND (AND D3 (NAND D1
D3)) (AND D1 D1)))) (OR D3 (OR DO (OR DO D1)))))).
```


GP with ADFs: Even-4-Parity Function

GP with ADFs on even-4-parity problem (based on 168 independent runs)

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

ت
0
0
0
0
0
0
0
0
0
$\#$
$\#$
$\#$
0

- Cumulative probability of success, $P(M, i)$, is 93% and 99% by generation 9 and 50 , respectively.
- If the problem is run through to generation 9, processing a total of $4,000 \times 10$ gener $\times 2$ runs $=80,000$
individuals is sufficient to yield a solution with 99% probability.

This is a considerable improvement in performance compared to the performance of GP without ADFs.

GP with ADFs: Even-4-Parity Function

An example of solution with 74 nodes.

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

```
(LIST3 (NAND (OR (AND (NOR ARGO ARG1) (NOR (AND ARG1
    ARG1) ARG1)) (NOR (NAND ARGO ARGO) (NAND ARG1
    ARG1))) (NAND (NOR (NOR ARG1 ARG1) (AND (OR
    (NAND ARGO ARGO) (NOR ARG1 ARGO)) ARGO)) (AND
    (OR ARGO ARGO) (NOR (OR (AND (NOR ARGO ARG1)
    (NAND ARG1 ARG1)) (NOR (NAND ARGO ARGO) (NAND
    ARG1 ARG1))) ARG1))))
    (OR (AND ARG2 (NAND ARGO ARG2)) (NOR ARG1 ARG1))
    (ADFO (ADFO DO D2) (NAND (OR D3 D1) (NAND D1
    D3)))).
```


GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

GP with ADFs: Even-4-Parity Function

An example of solution with 74 nodes.

```
(LIST3 (NAND (OR (AND (NOR ARGO ARG1) (NOR (AND ARG1
    ARG1) ARG1)) (NOR (NAND ARGO ARGO) (NAND ARG1
    ARG1))) (NAND (NOR (NOR ARG1 ARG1) (AND (OR
    (NAND ARGO ARGO) (NOR ARG1 ARGO)) ARGO)) (AND
    (OR ARGO ARGO) (NOR (OR (AND (NOR ARGO ARG1)
    (NAND ARG1 ARG1)) (NOR (NAND ARGO ARGO) (NAND
    ARG1 ARG1))) ARG1))))
(OR (AND ARG2 (NAND ARGO ARG2)) (NOR ARG1 ARG1))
(ADFO (ADFO DO D2) (NAND (OR D3 D1) (NAND D1
    D3)))).
```

- ADF0 defined in the first branch implements two-argument XOR function (odd-2-parity function).
- Second branch defines three-argument ADF1. It has no effect on the performance of the program since it is not called by the value-producing branch.
- VPB implements a function equivalent to ADF0 (ADF0 D0 D2) (EQV D3 D1)

GP with Hierarchical ADFs

Hierarchical form of ADFs: any function can call upon any other already-defined function.

- Hierarchy of function definitions where any function can be defined in terms of any

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary combination of already-defined functions.

- All ADFs have the same number of dummy arguments. Not all of them have to be used in a particular function definition.
- VPB has access to all of the already defined functions.

Setup of the GP with hierarchical ADFs:

- ADF0 branch

Functions: $\mathrm{F}=\{\mathrm{AND}, \mathrm{OR}, \mathrm{NAND}, \mathrm{NOR}\}$
Terminals: A2 = $\{$ ARG0, ARG1, ARG2 $\}$

- ADF1 branch

Functions: $\mathrm{F}=\{$ AND, OR, NAND, NOR, ADF0 $\}$
Terminals: A3 = ARG0, ARG1, ARG2 $\}$

- Value-producing branch

Functions: $\mathrm{F}=\{$ AND, OR, NAND, NOR, ADF0, ADF1 $\}$
Terminals: T4 $=\{\mathrm{D} 0, \mathrm{D} 1, \mathrm{D} 2, \mathrm{D} 3\}$

GP with Hierarchical ADFs: Even-4-Parity Function

An example of solution with 45 nodes.

GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

```
(LIST3 (NOR (NOR ARG2 ARGO) (AND ARGO ARG2))
    (NAND (ADFO ARG2 ARG2 ARGO)
        (NAND (ADFO ARG2 ARG1 ARG2)
            (ADFO (OR ARG2 ARG1)
                (NOR ARGO ARG1)
                (ADFO ARG1 ARGO ARG2))))
    (ADFO (ADF1 D1 D3 DO)
        (NOR (OR D2 D3) (AND D3 D3))
        (ADFO D3 D3 D2))).
```


GP Intro
GP Operators

- Initialization
- Full and grow
- PTC
- PTC1
- Selection
- Crossover
- SDC
- SAC
- ADF
- Performance

Summary

GP with Hierarchical ADFs: Even-4-Parity Function

An example of solution with 45 nodes.

```
(LIST3 (NOR (NOR ARG2 ARGO) (AND ARGO ARG2))
    (NAND (ADFO ARG2 ARG2 ARGO)
        (NAND (ADFO ARG2 ARG1 ARG2)
        (ADFO (OR ARG2 ARG1)
            (NOR ARGO ARG1)
            (ADFO ARG1 ARGO ARG2))))
    (ADFO (ADF1 D1 D3 DO)
    (NOR (OR D2 D3) (AND D3 D3))
    (ADF0 D3 D3 D2))).
```

- ADF0 defines a two-argument XOR function of variables ARG0 and ARG2 (it ignores ARG1).
- ADF1 defines a three-argument function that reduces to the two-argument equivalence function of the form (NOT (ADF0 ARG2 ARG0))
- VPB reduces to (ADF0 (ADF1 D1 D0) (ADF0 D3 D2))

Summary

Learning outcomes

After this lecture, a student shall be able to

- explain the main differences between GA and GP, and name typical application areas

GP Intro
GP Operators
Summary

- Learning outcomes for GP;
- describe the representation that GP uses, including the associated crossover and mutation operators;
- explain how GP deals with real-valued constants in evolved solutions;
- explain two different ways how GP deals with the possibility that a crossover or mutation operator results in an invalid offspring;
- describe solution initialization methods used in GP (full, grow, ramped half-n-half, PTC);
- explain greedy over-selection operator and why it was invented;
- motivate and describe the semantic crossover operators;
- explain "automatically defined functions" and motivate them;

Reading

[Koz94] John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge, MA, USA, 1994.
GP Intro
GP Operators
Summary

- Learning outcomes
[PLM08] Riccardo Poli, William B. Langdon, and Nicholas F. Mcphee. A Field Guide to Genetic Programming. Lulu Enterprises, UK Ltd, March 2008.

