

Faculty of Electrical Engineering Department of Cybernetics

# A0M33EOA: Differential Evolution. Other Types of Metaheuristics.

Petr Pošík

Czech Technical University in Prague Faculty of Electrical Engineering Department of Cybernetics



# Introduction

| R B                                          | Contents                                                            |  |
|----------------------------------------------|---------------------------------------------------------------------|--|
|                                              | Differential evolution (DE):                                        |  |
|                                              | Another successful heuristic for optimization in $R^D$ .            |  |
| Introduction                                 |                                                                     |  |
| Contents                                     | Swarm intelligence:                                                 |  |
| Differential Evolution<br>Swarm Intelligence | Particle Swarm Optimization (PSO, optimization in $\mathbb{R}^D$ ). |  |
| PSO                                          | Ant Colony Optimization (ACO, optimization on graphs).              |  |
| Ant Colonies                                 | _                                                                   |  |
| Conclusions                                  | _                                                                   |  |



| F | BN    |  |
|---|-------|--|
|   | TCO   |  |
|   | h A F |  |
| V |       |  |

# **Differential Evolution**

|                                                    | Developed by Storn and Price [SP97].                        |  |  |
|----------------------------------------------------|-------------------------------------------------------------|--|--|
|                                                    | Simple algorithm, easy to implement.                        |  |  |
| Introduction                                       | <ul> <li>Unusual breeding pipeline.</li> </ul>              |  |  |
| Differential Evolution                             |                                                             |  |  |
| <ul><li>DE Algorithm</li><li>DE Variants</li></ul> | Algorithm 1: DE Breeding Pipeline                           |  |  |
| Swarm Intelligence                                 | <b>Input:</b> Population $X$ with fitness in $f$ .          |  |  |
| PSO                                                | <b>Output:</b> Offspring population $X_N$ .                 |  |  |
| Ant Colonies                                       | 1 begin                                                     |  |  |
| Conclusions                                        | $\mathbf{z} \mid X_N \leftarrow \emptyset$                  |  |  |
| Conclusions                                        | $3  \text{foreach } x \in X \text{ do}$                     |  |  |
|                                                    | $4     (x_1, x_2, x_3) \leftarrow \texttt{Select}(X, f, x)$ |  |  |
|                                                    | 5 $u \leftarrow \text{Mutate}(x, x_1, x_2)$                 |  |  |
|                                                    | $6 \qquad y \leftarrow \text{Recombine}(u, x_3)$            |  |  |
|                                                    | 7 $X_N \leftarrow X_N \cup \texttt{BetterOf}(x, y)$         |  |  |
|                                                    | s return $X_N$                                              |  |  |
|                                                    |                                                             |  |  |

Vectors x,  $x_1$ ,  $x_2$ ,  $x_3$  shall all be different,  $x_1$ ,  $x_2$ ,  $x_3$  chosen uniformly.

For each population member x, an offspring y is created.

*y* replaces *x* in population if it is better.

<sup>[</sup>SP97] Rainer Storn and Kenneth Price. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4):341-359, December 1997.



### **DE Mutation and Recombination**

Mutation and recombination:

Introduction

Differential Evolution

- DE Algorithm
- DE Variants

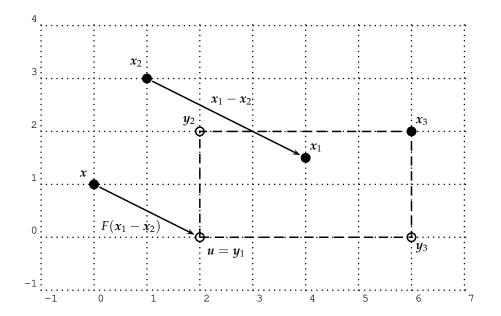
Swarm Intelligence

PSO

Ant Colonies

Conclusions

- $u \leftarrow x + F(x_1 x_2), \quad F \in (0, 2)$  $y_d \leftarrow \begin{cases} u_d & \text{iff rand}_d \le CR \text{ or } d = I_{\text{rand}} \\ x_{3,d} & \text{iff rand}_d > CR \text{ and } d \ne I_{\text{rand}} \end{cases}$
- rand<sub>d</sub> ~ U(0,1), different for each dimension
   *I*<sub>rand</sub> is a random index of the dimension that is always copied from *u*
  - $2^{D} 1$  possible candidate points *y* (in case of uniform crossover)





### **DE Variants**

Introduction

Differential Evolution

• DE Algorithm

• DE Variants

Swarm Intelligence

PSO

Ant Colonies

Conclusions

Small variations of the base algorithm:

- DE/rand vs DE/best: the "best" variant variant uses the best of 4 parent vectors in place of *x* when generating the offspring.
  - DE/./n: *n* is the number of difference vectors taken into account during mutation.
  - DE/././bin vs DE/././exp: binomial recombination (described above), exponential recombination (not described here)

| Ø | R BND          |  |
|---|----------------|--|
|   | <del>MCO</del> |  |
| ſ | R F F          |  |
| V |                |  |

### **DE Variants**

Small variations of the base algorithm:

- DE/rand vs DE/best: the "best" variant variant uses the best of 4 parent vectors in place of *x* when generating the offspring.
  - DE/./n: *n* is the number of difference vectors taken into account during mutation.
  - DE/././bin vs DE/././exp: binomial recombination (described above), exponential recombination (not described here)

\_\_\_\_ Many adaptive variants: SaDE, JADE, SHADE, ...

Differential Evolution

Introduction

DE AlgorithmDE Variants

Swarm Intelligence

PSO

Ant Colonies

Conclusions



# **Swarm Intelligence**



Swarm Intelligence
• Swarm Algorithms

Introduction

Ant Colonies

Conclusions

PSO

# **Swarm Algorithms**

Swarm intelligence:

- In nature: swarm (cz: roj, hejno) of small simple 'units' is able to create very complex behavioral patterns via cooperation.
  - **Emergence**: non-linear interactions of simple rules → complex behavior of the whole system.
- Analogy to the behavior of bees, wasps, ants, fish, birds, ...
- An engineering view:
  - Is it possible to model these systems *in silico* and use that model to solve a practical task?
  - How to design the simple units and their interactions such that a practically useful system emerges?



# **Particle Swarm Optimization**



Swarm Intelligence

### **Particle Swarm Optimization**

**Partice Swarm Optimization (PSO)**: an optimization algorithm inspired by the behavior of birds.

Inspiration:

- Birds fly over the landscape and land on the highest hill.
- Birds are modeled by particles in a multidimensional vector space.
- The particles have their *position* and *speed* (and momentum).
- They remember their own best position (i.e., the highest place of the landscape they flew over), but also
- they communicate and use the best position of their neighboring particles to update their own position and speed.
- The communication is usually of 2 types:
  - 1. **Globally best position** is known to all particles and is updated as soon as any particle finds an improvement.
  - 2. **Best position in neighborhood** is shared among a group of neighboring particles.

Introduction

PSO • PSO

Ant Colonies

Conclusions

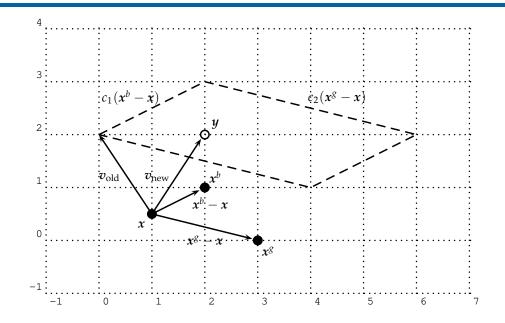
# **PSO Algorithm**

Algorithm 2: Canonical PSO

1 begin Initialize positions  $x_i$  and velocities  $v_i$ . 2 Initialize personal best positions  $x_i^b \leftarrow x_i$ . 3 Initialize globally best position 4  $\mathbf{x}^{g} \leftarrow \mathbf{x}_{k}, \forall i : f(\mathbf{x}_{k}) \leq f(\mathbf{x}_{i})$ for  $i = 1, \dots, N$  do 5  $v_i \leftarrow$ 6  $\omega \boldsymbol{v}_i + c_1 \boldsymbol{r}_1 \circ (\boldsymbol{x}_i^b - \boldsymbol{x}_i) + c_2 \boldsymbol{r}_2 \circ (\boldsymbol{x}^g - \boldsymbol{x}_i)$  $x_i \leftarrow x_i + v_i$ 7 If  $f(\mathbf{x}_i) < f(\mathbf{x}_i^b)$ ,  $\mathbf{x}_i^b \leftarrow \mathbf{x}_i$ . If  $f(\mathbf{x}_i) < f(\mathbf{x}^g)$ ,  $\mathbf{x}^g \leftarrow \mathbf{x}_i$ . 8 9 If termination condition not satisfied, go to 5. 10

Meaning of symbols:

- $\begin{array}{ll} f & \text{objective function (landscape)} \ f : \mathcal{R}^D \to \\ \mathcal{R} \end{array}$
- *N* the number of particles
- $x_i$  particle positions,  $x_i \in \mathcal{R}^D$
- $v_i$  particle velocities,  $v_i \in \mathcal{R}^D$
- $x_i^b$  personal best position

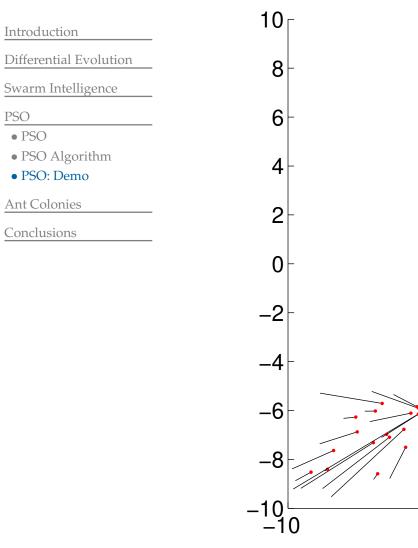


- $x^g$  globally best position
- $\omega$  particle momentum, suitable value is e.g. 0.9, sometimes it decreases during simulation e.g. to 0.4.
- *c*<sub>1</sub>, *c*<sub>2</sub> attraction constants, 'cognitive' and 'social' componments, suitable values between 1 and 2
- $r_1, r_2$  random vectors from  $U(0, 1)^D$
- vector multiplication by items



PSO on 2D Sphere function:

-5



5

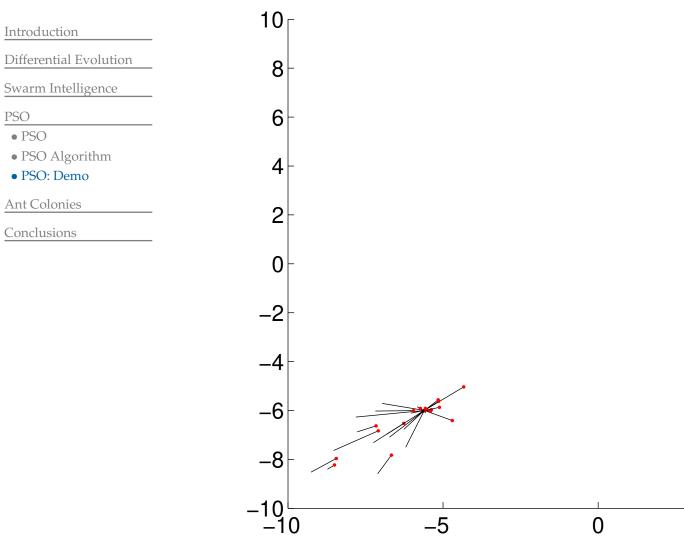
0



PSO • PSO

### **PSO: Demo**

PSO on 2D Sphere function:



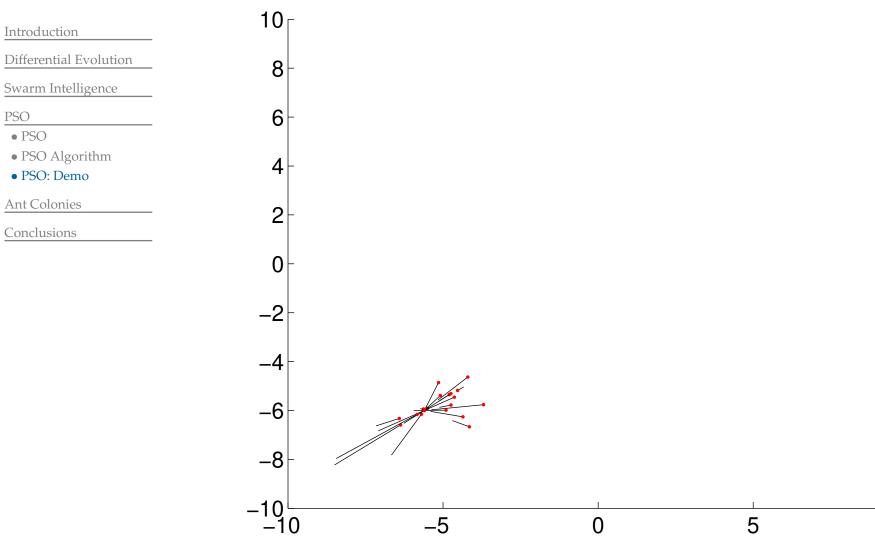
5



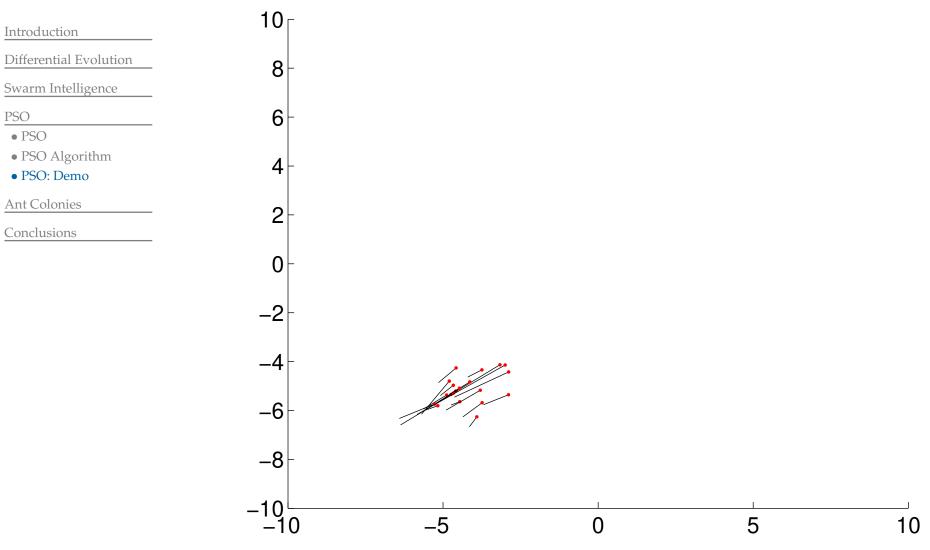
PSO

### **PSO: Demo**

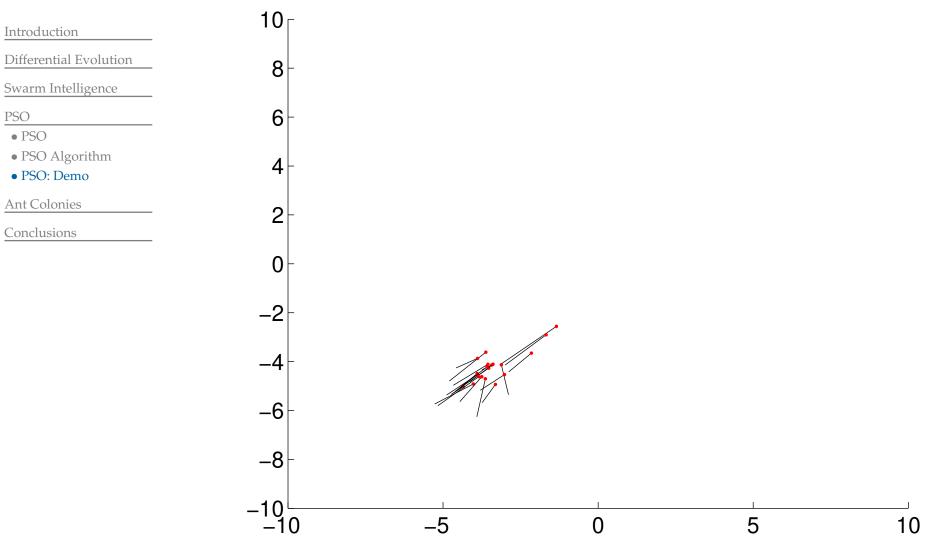
PSO on 2D Sphere function:



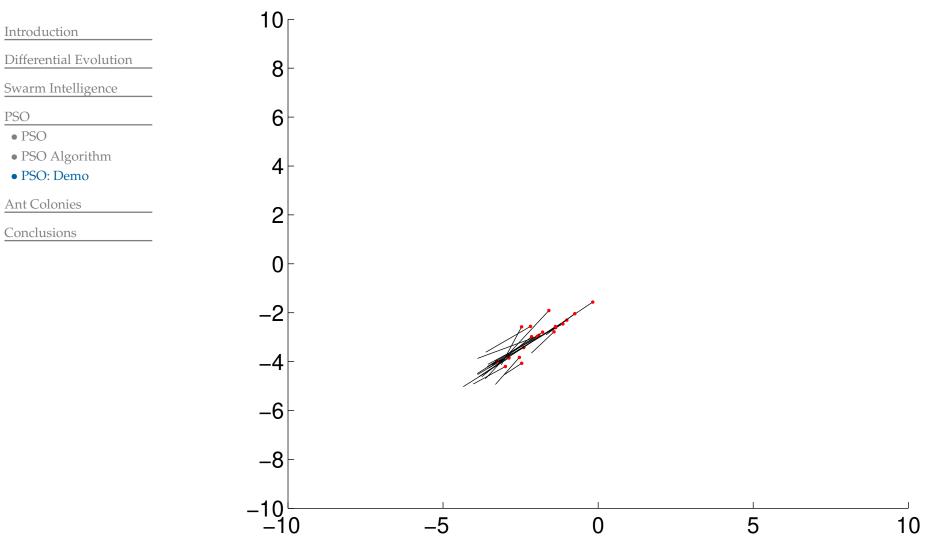




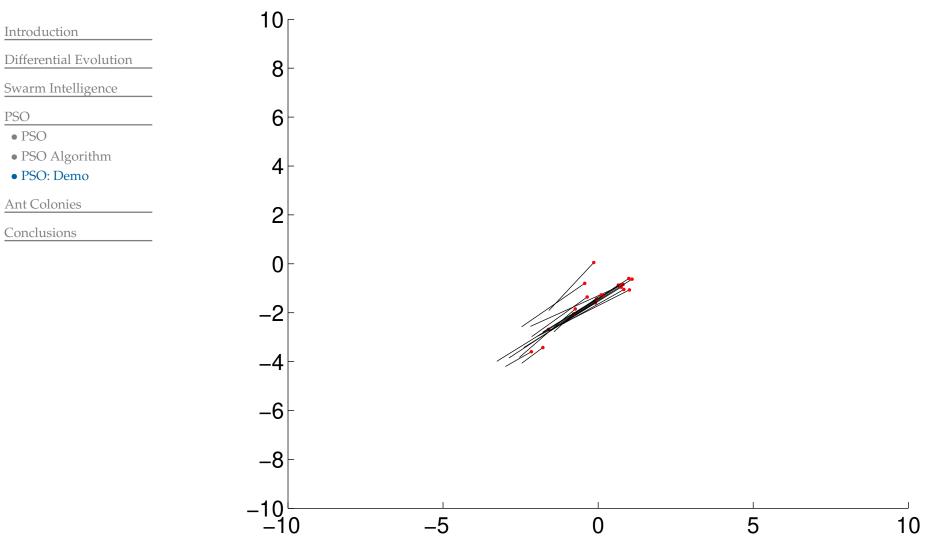




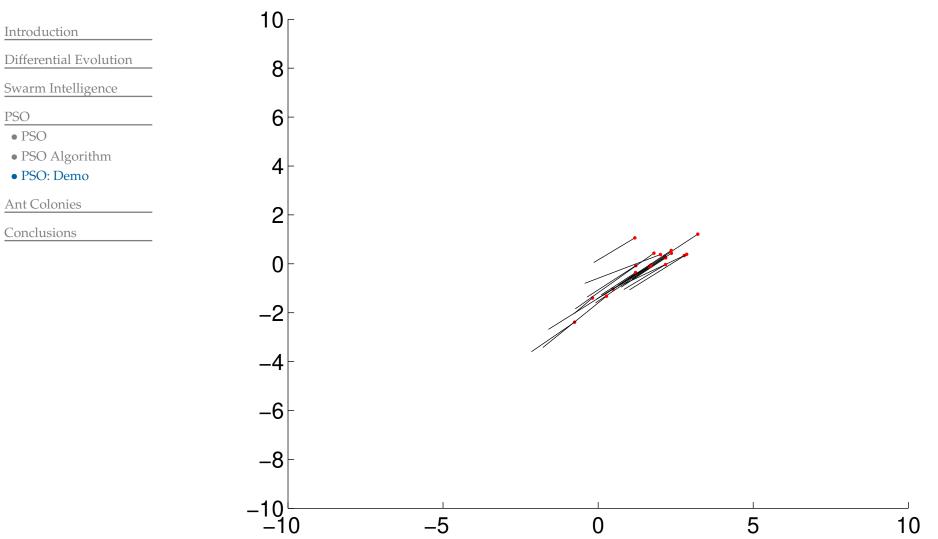










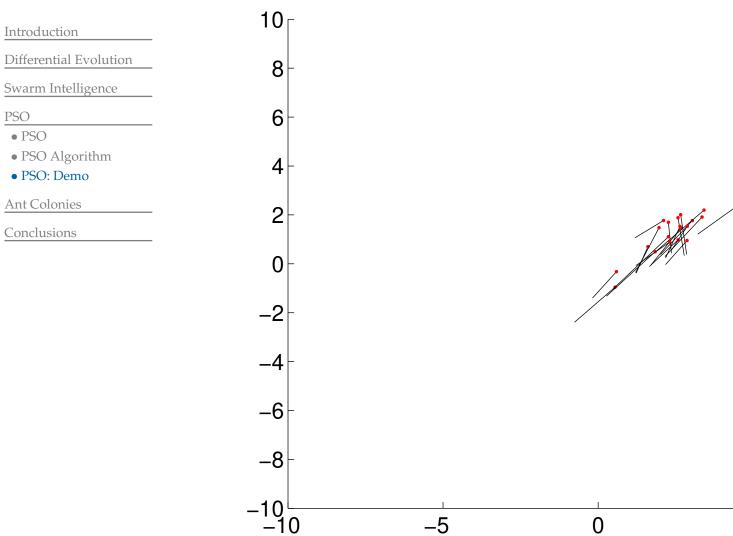




PSO

### **PSO: Demo**

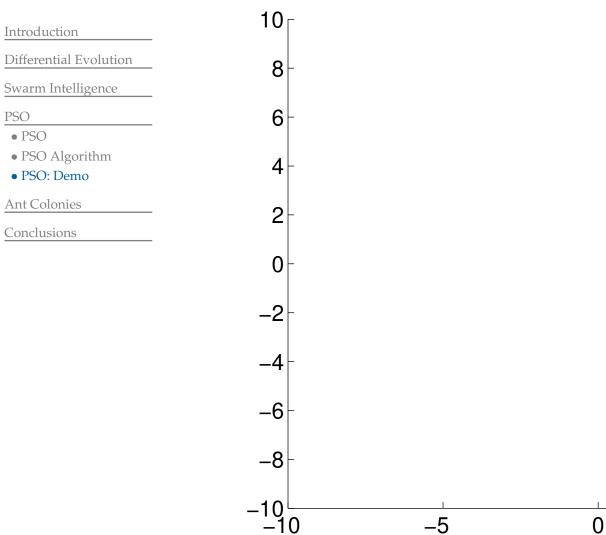
PSO on 2D Sphere function:



5



PSO on 2D Sphere function:



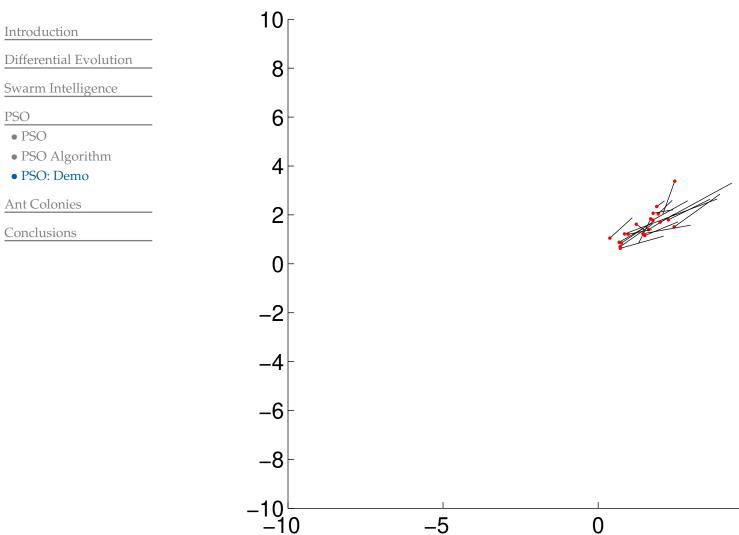
5



PSO • PSO

### **PSO: Demo**

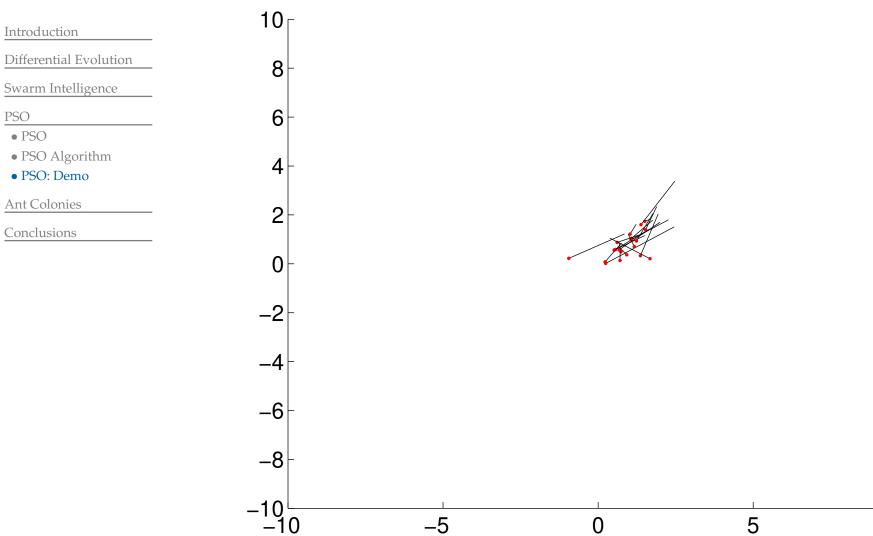
PSO on 2D Sphere function:



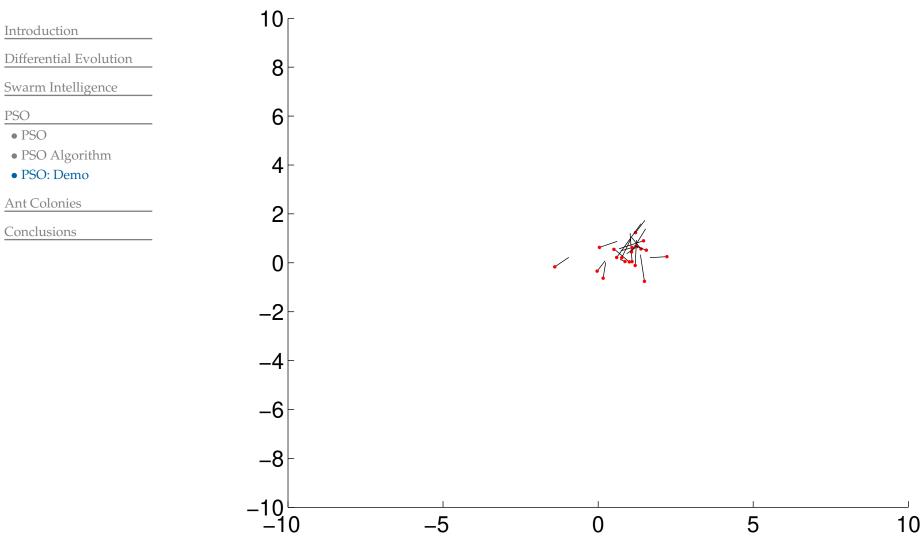
5



PSO on 2D Sphere function:





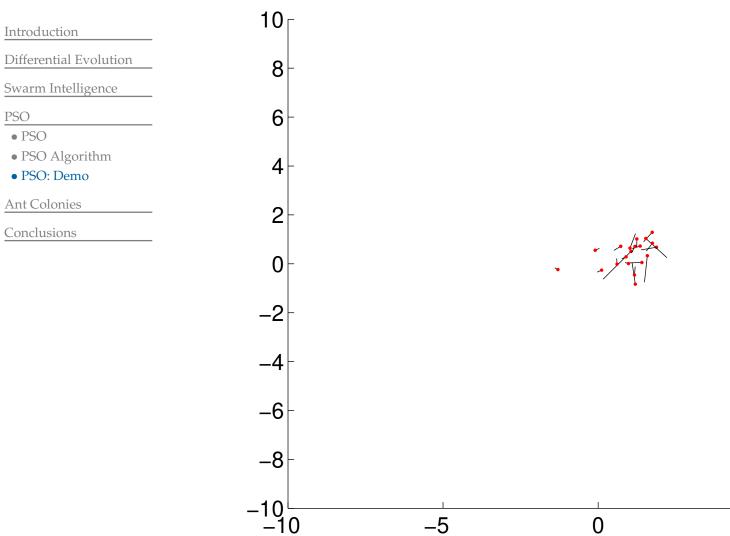




PSO

### **PSO: Demo**

PSO on 2D Sphere function:



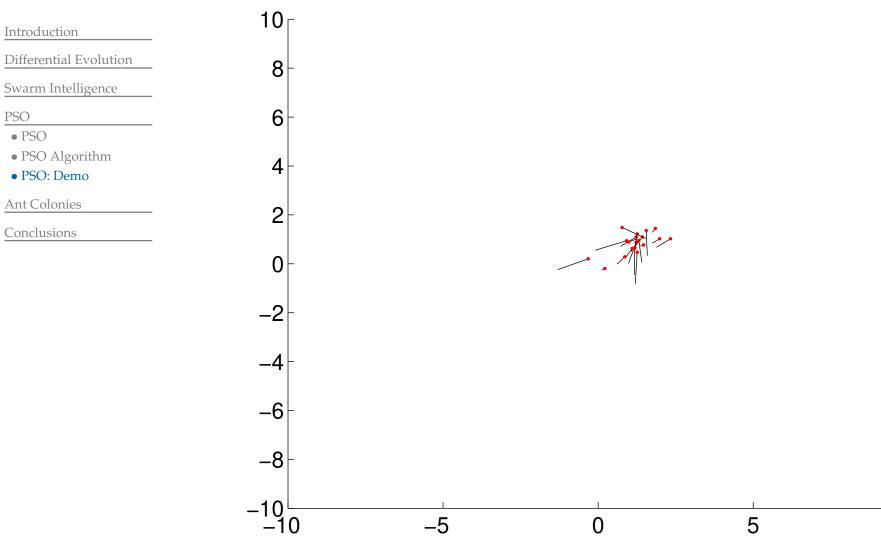
5



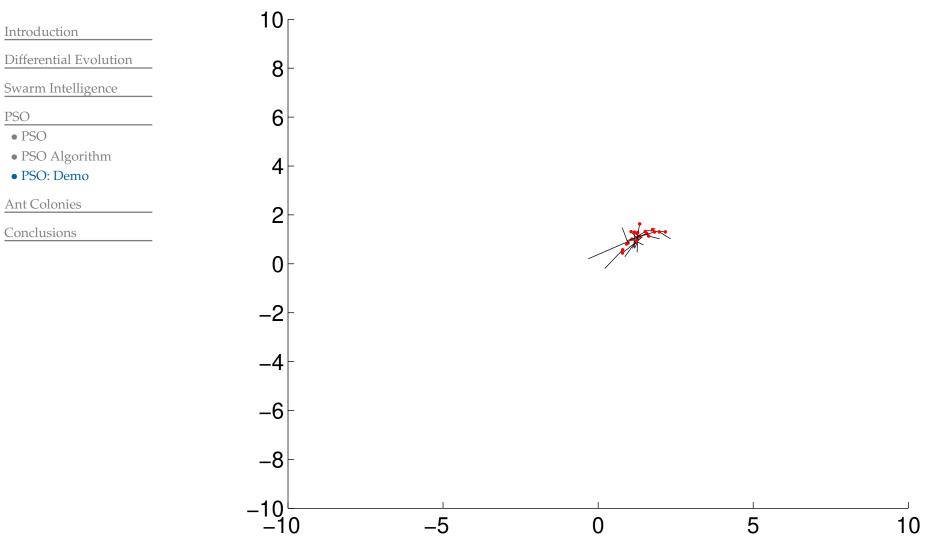
PSO

### **PSO: Demo**

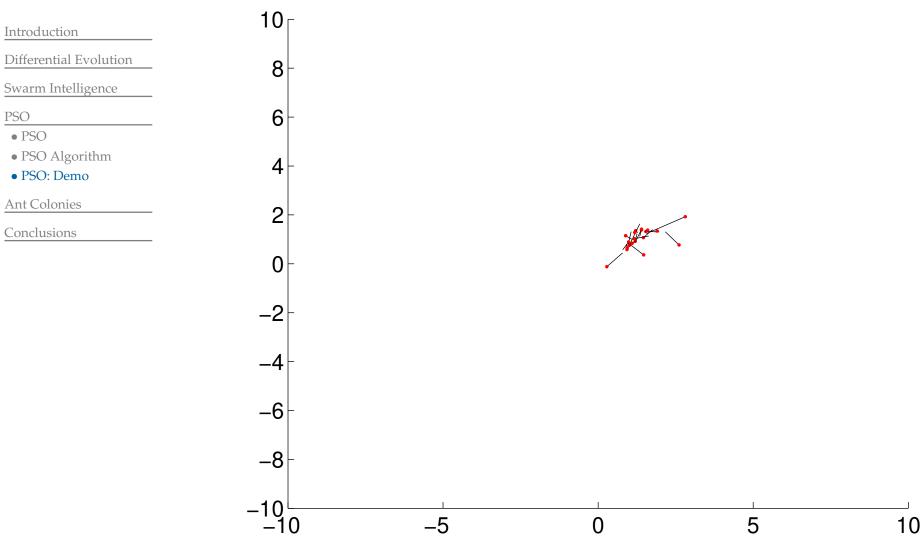
PSO on 2D Sphere function:













# **Ant Colonies**



Swarm Intelligence

# Ant colonies

Ants:

- Social insects
- Ant colonies exhibit an intelligent behavior:
  - labor division, work coordination
  - complex nests
  - ability to find 'low-energy' path between the nest and a food source
- They communicate by
  - 1. physical contact (they touch with their antennas)
  - 2. interaction with the environment (pheromone trails)

"In nature, ants first search their environment randomly, until they find a source of food. Then, they return to the nest and lay a pheromone trail behind. Other ants are able to sense this pheromone trail and are able to follow it, and thus make it stronger. The pheromone evaporates; after the food source is exhausted, the random foraging reemerges."

Introduction

• ACO

PSO

- Algorithm parts
- Applications

Conclusions



Swarm Intelligence

Algorithm parts Applications

Introduction

Ant Colonies

Ant colonies

• ACO

Conclusions

PSO

# **Ant Colony Optimization**

**Ant Colony Optimization (ACO)** is a class of stochastic optimization algorithms for solving combinatorial problems.

Similarities with the real ants:

- a colony of cooperating individuals
- pheromone trail

- indirect communication via pheromone (stigmergy)
- probabilistic decision making, local strategies

Differences from the real ants:

- (usually) discrete world (a graph)
- inner state, memory
- the amount of pheromone train can depend on the solution quality
- may use several types of pheromones



Swarm Intelligence

Introduction

Ant Colonies

ACO

Conclusions

Ant colonies

Algorithm parts Applications

PSO

# **Ant Colony Optimization**

**Ant Colony Optimization (ACO)** is a class of stochastic optimization algorithms for solving combinatorial problems.

Similarities with the real ants:

- a colony of cooperating individuals
- pheromone trail
- indirect communication via pheromone (stigmergy)
- probabilistic decision making, local strategies

Differences from the real ants:

- (usually) discrete world (a graph)
- inner state, memory
- the amount of pheromone train can depend on the solution quality
- may use several types of pheromones

#### Algorithm 3: ACO

#### 1 begin

5

6

7

- 2 Initialize the pheromone trails on graph edges:  $\tau_{ij}(0) = \tau_0$ .
- <sup>3</sup> Set the initial position of ants in the graph.
- 4 **while** *not termination condition* **do** 
  - foreach *ant* do
  - Build a solution.
  - Apply local search. // Optional, but used very often.
  - Update pheromone trails.



Swarm Intelligence

# **Algorithm parts**

#### **Ant** *k* **constructs a solution**:

Probability ant *k* will move from the current node *i* to neighboring node *j* is

$$p_{ij}^k(t) = \frac{(\tau_{ij}(t))^{\alpha}(\eta_{ij})^{\beta}}{\sum_{l \in \mathcal{N}_i^k} (\tau_{il}(t))^{\alpha}(\eta_{il})^{\beta}}, \text{ kde } j \in \mathcal{N}_i^k,$$

#### \_\_\_\_\_

Ant Colonies

Ant colonies

Introduction

• ACO

PSO

- Algorithm parts
- Applications

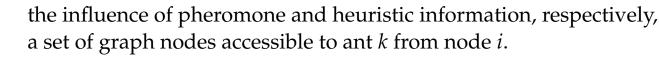
Conclusions

where

 $\alpha, \beta$  $\mathcal{N}_{i}^{k}$ 

 $\tau_{ii}$ 

- the amount of pheromone on edge  $i \rightarrow j$ ,
- $\eta_{ij} = \frac{1}{d_{ij}}$  known heuristic information,



- If  $\alpha = 0$ , only the heuristic information has an effect, and the solution construction reduces to greedy algorithm (nearest neighbor heuristic).
- If  $\beta = 0$ , only the pheromone trail has an effect. The paths found in the first iteration have a big influence. Moreover, if  $\alpha > 1$ , stagnation occurs very fast, i.e. all ants use the same (not optimal) path.
- Suggested values of parameters:

 $\alpha = 1$   $\beta = 2 \text{ to } 5$   $\rho = 0.5$  m = n (TSP)  $\tau_0 = m/C^{nn} \text{ (TSP)}$ 

*m* is the number of ants, *n* is the number of cities,  $C^{nn}$  is the length of the path constructed by the nearest neighbor heuristic.



# Algorithm parts (cont.)

#### Pheromone update on all edges

- Done after all ants find their solution.
- Pheromone evaporation:  $\tau_{ij} \leftarrow (1 \rho)\tau_{ij}$ .  $\rho$  is the evaporation rate, allows to 'forget' bad paths.

Pheromone deposition from all ants:  $\tau_{ij} \leftarrow \tau_{ij} + \sum_{k=1}^{m} \Delta \tau_{ij}^{k}$ , where

 $\Delta \tau_{ij}^k = \begin{cases} 1/C^k & \text{if ant } k \text{ used edge } i \to j \\ 0 & \text{otherwise,} \end{cases}$ 

 $C^k$  is the length of the path of ant k.

#### Other options:

- The best path is reinforced the most.
- The amount of deposited pheromone is proportional to the ant rank according to the path lengths (i.e., not directly proportional to path lengths).
- Update of pheromone trails as soon as an ant uses and edge.
- More types of pheromones can be used:
  - Ants can start from both the nest and the food source.
  - We can have more types of ants.

..

**Differential Evolution** 

Introduction

PSO

#### Ant Colonies

- Ant colonies
- ACO
- Algorithm parts
- Applications

Conclusions



Swarm Intelligence

Introduction

Ant Colonies

• ACO

Conclusions

Ant colonies

Algorithm parts Applications

PSO

# **Applications**

ACO was able to find good solutions in the following tasks:

- Traveling salesperson problem
- Network routing, vehicle routing
  - Scheduling
- Quadratic assignment problem
- Shortest common supersequence
- Classification rule learning

#### Advantages:

The graph topology can change in time (e.g. in routing problems)

Demo: ant foraging



# **Conclusions**



Swarm Intelligence

Introduction

Ant Colonies

Conclusions • Summary

PSO

### Summary

- There are plenty of nature-inspired techniques, other than EAs.
- Swarm intelligence takes advantage of the emergent swarm behavior which is a result of simple interactions among individual swarm members.
- Particle swarm optimization primarily aims at real-parameter optimization, but there are also variants suitable for discrete spaces.
- Ant colonies are used to solve problems which can be reduced to search for the shortest path in a graph (combinatorial problems). Again, variants for real-parameter optimization exist (but are somewhat 'unnatural').