
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

Department of Cybernetics

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 1 / 40

A0M33EOA

Optimization. Local Search. Evolutionary methods.

Petr Pošı́k

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Cybernetics



Course Introduction

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 2 / 40



What is this course about?

Course Introduction

• Course

Revision

Local Search

EAs

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 3 / 40

Problem solving by means of evolutionary algorithms, especially for hard problems
where

■ no low-cost, analytic and complete solution is known.



What is this course about?

Course Introduction

• Course

Revision

Local Search

EAs

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 3 / 40

Problem solving by means of evolutionary algorithms, especially for hard problems
where

■ no low-cost, analytic and complete solution is known.

What makes ’hard problems’ hard?

1. Barriers inside the people solving the problem.

■ Insufficient equipment (money, knowledge, . . . )

■ Psychological barriers (insufficient abstraction or intuition ability, ‘fossilization’,
influence of ideology or religion, . . . )

2. Number of possible solutions grows very quickly with the problem size.

■ Complete enumeration intractable

3. The goal must fulfill some constraints.

■ Constraints make the problem much more complex, sometimes it is very hard to
find any feasible solution.

4. Two or more antagonistic goals.

■ It is not possible to improve one without compromising the other.

5. The goal is noisy or time dependent.

■ The solution process must be repeated over and over.

■ Averaging to deal with noise.



Contents

Course Introduction

• Course

Revision

Local Search

EAs

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 4 / 40

■ Prerequisities: Revision

■ Local search

■ Evolutionary algorithms



Revision

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 5 / 40



Question you should be able to answer right now

Course Introduction

Revision

• Questions

• Optimization

• Representation

• Problem features

• Taxonomy

• BBO

• Algorithm features

• Algorithms

Local Search

EAs

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 6 / 40

■ What is optimization? Give some examples of optimization tasks.

■ In what courses did you meet optimization?

■ What sorts of optimization tasks do you know? What are their characteristics?

■ What is the difference between exact methods and heuristics?

■ What is the difference between constructive and improving (generative, perturbative)
methods?

■ What is the black-box optimization? What can you do to solve such problems?

■ What is the difference between local and global search?

(Skip the rest of this section
if you know the answers to the above questions.)



Optimization problems: definition

Course Introduction

Revision

• Questions

• Optimization

• Representation

• Problem features

• Taxonomy

• BBO

• Algorithm features

• Algorithms

Local Search

EAs

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 7 / 40

Among all possible objects x ∈ F ⊂ S , we want to determine such an object xOPT that
optimizes (minimizes) the function f :

xOPT = argmin
x∈F⊂S

f (x), (1)

where

■ S is the search space (of all possible candidate solutions),

■ F is the space of all feasible solutions (which satisfy all constraints), and

■ f is the objective function which measures the quality of a candidate solution x.



Optimization problems: definition

Course Introduction

Revision

• Questions

• Optimization

• Representation

• Problem features

• Taxonomy

• BBO

• Algorithm features

• Algorithms

Local Search

EAs

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 7 / 40

Among all possible objects x ∈ F ⊂ S , we want to determine such an object xOPT that
optimizes (minimizes) the function f :

xOPT = argmin
x∈F⊂S

f (x), (1)

where

■ S is the search space (of all possible candidate solutions),

■ F is the space of all feasible solutions (which satisfy all constraints), and

■ f is the objective function which measures the quality of a candidate solution x.

The task can be written in a different format, e.g.: minimize f (x)

subject to x ∈ F



Optimization problems: definition

Course Introduction

Revision

• Questions

• Optimization

• Representation

• Problem features

• Taxonomy

• BBO

• Algorithm features

• Algorithms

Local Search

EAs

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 7 / 40

Among all possible objects x ∈ F ⊂ S , we want to determine such an object xOPT that
optimizes (minimizes) the function f :

xOPT = argmin
x∈F⊂S

f (x), (1)

where

■ S is the search space (of all possible candidate solutions),

■ F is the space of all feasible solutions (which satisfy all constraints), and

■ f is the objective function which measures the quality of a candidate solution x.

The task can be written in a different format, e.g.: minimize f (x)

subject to x ∈ F

The representation of a solution is

■ a data structure that holds the variables manipulated during optimization, and

■ induces the search space S .

The constraints then define the feasible part F of the search space S .

The optimization criterion (aka objective or evaluation function) f

■ must “understand” the representation, and adds the meaning (semantics) to it.

■ It is a measure of the solution quality.

■ It is not always defined analytically, it may be a result of a simulation or experiment,
it may be a subjective human judgement, . . .



Representation

Course Introduction

Revision

• Questions

• Optimization

• Representation

• Problem features

• Taxonomy

• BBO

• Algorithm features

• Algorithms

Local Search

EAs

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 8 / 40

Representation is a data structure holding the characteristics of a candidate solution, i.e.
its tunable variables. Very often this is

■ a vector of real numbers,

■ a binary string,

■ a permutation of integers,

■ a matrix,

but it can also be (or be interpreted as)

■ a graph, a tree,

■ a schedule,

■ an image,

■ a finite automaton,

■ a set of rules,

■ a blueprint of certain device,

■ . . .



Features of optimization problems

Course Introduction

Revision

• Questions

• Optimization

• Representation

• Problem features

• Taxonomy

• BBO

• Algorithm features

• Algorithms

Local Search

EAs

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 9 / 40

■ Discrete (combinatorial) vs. continuous vs. mixed optimization.

■ Constrained vs. unconstrained optimization.

■ None (feasibility problems) vs. single vs. many objectives.

■ Deterministic vs. stochastic optimization.

■ Static vs. time-dependent optimization.



Features of optimization problems

Course Introduction

Revision

• Questions

• Optimization

• Representation

• Problem features

• Taxonomy

• BBO

• Algorithm features

• Algorithms

Local Search

EAs

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 9 / 40

■ Discrete (combinatorial) vs. continuous vs. mixed optimization.

■ Constrained vs. unconstrained optimization.

■ None (feasibility problems) vs. single vs. many objectives.

■ Deterministic vs. stochastic optimization.

■ Static vs. time-dependent optimization.

E.g., continuous constrained subclass may have other features:

■ Convex vs. non-convex optimization.

■ Smooth vs. non-smooth optimization.

■ . . .



Taxonomy of single-objective deterministic optimization

Course Introduction

Revision

• Questions

• Optimization

• Representation

• Problem features

• Taxonomy

• BBO

• Algorithm features

• Algorithms

Local Search

EAs

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 10 / 40

Part of one possible taxonomy:

■ Discrete

■ Integer Programming, Combinatorial Optimization, . . .

■ Continuous

■ Unconstrained

■ Nonlinear least squares, Nonlinear equations, Nondifferentiable
optimization, Global optimization, . . .

■ Constrained

■ Bound constrained, Nondifferentiable optimization, Global optimization, . . .

■ Linearly constrained

■ Linear programming, Quadratic programming

■ Nonlinear programming

■ Semidefinite programming, Second-order cone programming,
Quadratically-constrained quadratic programming, Mixed integer
nonlinear programming, . . .



Black-box optimization

Course Introduction

Revision

• Questions

• Optimization

• Representation

• Problem features

• Taxonomy

• BBO

• Algorithm features

• Algorithms

Local Search

EAs

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 11 / 40

The more we know about the problem, the narrower class of tasks we want to solve,
and the better algorithm we can make for them. If we know nothing about the
problem. . .



Black-box optimization

Course Introduction

Revision

• Questions

• Optimization

• Representation

• Problem features

• Taxonomy

• BBO

• Algorithm features

• Algorithms

Local Search

EAs

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 11 / 40

The more we know about the problem, the narrower class of tasks we want to solve,
and the better algorithm we can make for them. If we know nothing about the
problem. . .

Black-box optimization (BBO)

■ The inner structure of the objective function f is unknown.

■ Virtually no assumptions can be taken as granted when designing a BBO algorithm.

■ BB algorithms are thus widely applicable

■ continuous, discrete, mixed

■ constrained, unconstrained

■ . . .

■ But generally they have lower performance than algorithms using the right
assumptions.

■ Swiss army knives: you can do virtually everyting with them, but sometimes a
hammer, or a needle would be better.



Black-box optimization

Course Introduction

Revision

• Questions

• Optimization

• Representation

• Problem features

• Taxonomy

• BBO

• Algorithm features

• Algorithms

Local Search

EAs

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 11 / 40

The more we know about the problem, the narrower class of tasks we want to solve,
and the better algorithm we can make for them. If we know nothing about the
problem. . .

Black-box optimization (BBO)

■ The inner structure of the objective function f is unknown.

■ Virtually no assumptions can be taken as granted when designing a BBO algorithm.

■ BB algorithms are thus widely applicable

■ continuous, discrete, mixed

■ constrained, unconstrained

■ . . .

■ But generally they have lower performance than algorithms using the right
assumptions.

■ Swiss army knives: you can do virtually everyting with them, but sometimes a
hammer, or a needle would be better.

What can a BBO algorithm do?

■ Sample (create) a candidate solution,

■ check whether it is feasible, and

■ evaluate it using the objective function.

Anything else (gradients? noise? . . . ) must be estimated from the samples!



Features of optimization methods

Course Introduction

Revision

• Questions

• Optimization

• Representation

• Problem features

• Taxonomy

• BBO

• Algorithm features

• Algorithms

Local Search

EAs

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 12 / 40

Do they provably provide the optimal solution?

■ Exact methods

■ ensure optimal solutions, but

■ are often tractable only for small problem instances.

■ Heuristics

■ provide only approximations, but

■ use techniques that “usually” work quite well, even for larger instances.



Features of optimization methods

Course Introduction

Revision

• Questions

• Optimization

• Representation

• Problem features

• Taxonomy

• BBO

• Algorithm features

• Algorithms

Local Search

EAs

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 12 / 40

Do they provably provide the optimal solution?

■ Exact methods

■ ensure optimal solutions, but

■ are often tractable only for small problem instances.

■ Heuristics

■ provide only approximations, but

■ use techniques that “usually” work quite well, even for larger instances.

How do they create the solution?

■ Constructive algorithms

■ require discrete search space,

■ construct full solutions incrementally, and

■ must be able to evaluate partial solutions.

■ They are thus not suitable for black-box optimization.

■ Generative algorithms

■ generate complete candidate solutions as a whole.

■ They are suitable for black-box optimization, since only complete solutions need to
be evaluated.



Optimization algorithms you may have heard of

Course Introduction

Revision

• Questions

• Optimization

• Representation

• Problem features

• Taxonomy

• BBO

• Algorithm features

• Algorithms

Local Search

EAs

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 13 / 40

Methods for discrete spaces:

■ Complete (enumerative) search

■ Graph-based: depth-, breadth-, best-first search, greedy search, A∗

■ Decomposition-based: divide and conquer, dynamic programming, branch and
bound

Methods for continuous spaces:

■ Random search

■ Gradient methods, simplex method for linear programming, trust-region methods

■ Local search, Nelder-Mead downhill simplex search



Local Search

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 14 / 40



Neighborhood, local optimum

Course Introduction

Revision

Local Search

• Neighborhood

• Local search

• LS Demo

• Rosenbrock

• Rosenbrock demo

• Nelder-Mead

• NM demo

• Lessons Learned

• Escape from LO

• Taboo

• Stochastic HC

• SA

EAs

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 15 / 40

The neighborhood of a point x ∈ S :

N(x, d) = {y ∈ S|dist(x, y) ≤ d} (2)

Measure of the distance between points x and y: S × S → R:

■ Binary space: Hamming distance, . . .

■ Real space: Euclidean, Manhattan (City-block), Mahalanobis, . . .

■ Matrices: Amari, . . .

■ In general: number of applications of some operator that would transform x into y in
dist(x, y) steps.



Neighborhood, local optimum

Course Introduction

Revision

Local Search

• Neighborhood

• Local search

• LS Demo

• Rosenbrock

• Rosenbrock demo

• Nelder-Mead

• NM demo

• Lessons Learned

• Escape from LO

• Taboo

• Stochastic HC

• SA

EAs

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 15 / 40

The neighborhood of a point x ∈ S :

N(x, d) = {y ∈ S|dist(x, y) ≤ d} (2)

Measure of the distance between points x and y: S × S → R:

■ Binary space: Hamming distance, . . .

■ Real space: Euclidean, Manhattan (City-block), Mahalanobis, . . .

■ Matrices: Amari, . . .

■ In general: number of applications of some operator that would transform x into y in
dist(x, y) steps.

Local optimum:

■ Point x is a local optimum, if f (x) ≤ f (y) for all points y ∈ N(x, d) for some positive d.

■ Small finite neighborhood (or the knowledge of derivatives) allows for validation of
local optimality of x.

Global optimum:

■ Point x is a global optimum, if f (x) ≤ f (y) for all points y ∈ F .



Local Search, Hill-Climbing

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 16 / 40

Algorithm 1: LS with First-improving Strat-
egy

1 begin
2 x← Initialize()

3 while not TerminationCondition() do
4 y← Perturb(x)
5 if BetterThan(y, x) then
6 x← y

Features:

■ usually stochastic, possibly deterministic,
applicable in discrete and continuous spaces



Local Search, Hill-Climbing

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 16 / 40

Algorithm 1: LS with First-improving Strat-
egy

1 begin
2 x← Initialize()

3 while not TerminationCondition() do
4 y← Perturb(x)
5 if BetterThan(y, x) then
6 x← y

Features:

■ usually stochastic, possibly deterministic,
applicable in discrete and continuous spaces

Algorithm 2: LS with Best-improving Strat-
egy

1 begin
2 x← Initialize()

3 while not TerminationCondition() do
4 y← BestInNeighborhood(N(x, d))
5 if BetterThan(y, x) then
6 x← y

Features:

■ deterministic, applicable only in discrete
spaces, or in descretized real-valued spaces,
where N(x, d) is finite and small



Local Search, Hill-Climbing

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 16 / 40

Algorithm 1: LS with First-improving Strat-
egy

1 begin
2 x← Initialize()

3 while not TerminationCondition() do
4 y← Perturb(x)
5 if BetterThan(y, x) then
6 x← y

Features:

■ usually stochastic, possibly deterministic,
applicable in discrete and continuous spaces

Algorithm 2: LS with Best-improving Strat-
egy

1 begin
2 x← Initialize()

3 while not TerminationCondition() do
4 y← BestInNeighborhood(N(x, d))
5 if BetterThan(y, x) then
6 x← y

Features:

■ deterministic, applicable only in discrete
spaces, or in descretized real-valued spaces,
where N(x, d) is finite and small

The influence of the neighborhood size:

■ Small neighborhood: fast search, huge risk of getting stuck in local optimum (in zero neghborhood,
the same point is generated over and over)

■ Large neighborhood: lower risk of getting stuck in LO, but the efficiency drops. If N(x, d) = S , the
search degrades to

■ random search in case of first-improving strategy, or to

■ exhaustive search in case of best-improving strategy.



Local Search Demo

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 17 / 40

LS with first-improving strategy:

■ Neighborhood given by Gaussian distribution.

■ Neighborhood is static during the whole algorithm run.

−3 −2.5 −2 −1.5 −1 −0.5 0

−0.5

0

0.5

1

1.5

Local Search on Sphere Function

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

2

Local Search on Rosenbrock Function



Rosenbrock’s Optimization Algorithm

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 18 / 40

Described in [Ros60]:

Algorithm 3: Rosenbrock’s Algorithm

Input: α > 1, β ∈ (0, 1)
1 begin
2 x← Initialize(); xo ← x

3 {e1, . . . , eD} ← InitOrtBasis()

4 {d1, . . . , dD} ← InitMultipliers()

5 while not TerminationCondition() do
6 for i=1. . . D do
7 y← x + diei

8 if BetterThan(y,x) then
9 x← y

10 di ← α · di

11 else
12 di ← −β · di

13 if AtLeastOneSuccInAllDirs()
and AtLeastOneFailInAllDirs()

then
14 {e1, . . . , eD} ←

UpdOrtBasis(x− xo)

15 xo ← x

Features:

■ D candidates generated each iteration

■ neighborhood in the form of a pattern

■ adaptive neighborhood parameters

■ distances

■ directions

DEMO

[Ros60] H. H. Rosenbrock. An automatic method for finding the greatest or least value of a function. The Computer Journal, 3(3):175–184, March 1960.



Rosenbrock’s Algorithm Demo

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 19 / 40

Rosenbrock’s algorithm:

■ Neighborhood given by a pattern.

■ Neighborhood is adaptive (directions and lengths of the pattern).

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Rosenbrock Method on Sphere Function

−3 −2 −1 0 1

0

0.5

1

1.5

2

2.5

3

3.5

4

Rosenbrock Method on Rosenbrock Function



Nelder-Mead Simplex Search

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 20 / 40

Simplex downhill search (amoeba) [NM65]:

Algorithm 4: Nelder-Mead Simplex Algo-
rithm

1 begin
2 (x1, . . . , xD+1)← InitSimplex()

so that f (x1) ≤ f (x2) ≤ . . . ≤ f (xD+1)
3 while not TerminationCondition() do

4 x← 1
D ∑

D
d=1 xd

5 yr ← x + ρ(x− xD+1)
6 if BetterThan(yr , xD) then xD+1 ← yr

7 if BetterThan(yr , x1) then
8 ye ← x + χ(xr − x)
9 if BetterThan(ye , yr) then

xD+1 ← ye ; Continue

10 if not BetterThan(yr , xD) then
11 if BetterThan(yr , xD+1) then
12 yoc ← x + γ(xr − x)
13 if BetterThan(yoc , yr) then

xD+1 ← yoc ; Continue

14 else
15 yic ← x− γ(x− xD+1)
16 if BetterThan(yic , xD+1) then

xD+1 ← yic ; Continue

17 ysi ← x1 + σ(xi − x1), i ∈ 2, . . . , D + 1
18 MakeSimplex(x1, ys2, . . . , ys(D+1))

-1 0 1 2 3 4 5 6 7

-1

0

1

2

3

4

x3 x2

x1 yr

ye

yoc

yic

ys3 ys2

Features:

■ universal algorithm for BBO in real space

■ inRD maintains a simplex of D + 1 points

■ neighborhood in the form of a pattern
(reflection, extension, contraction, reduction)

■ static neighborhood parameters!

■ adaptivity caused by changing relationships
among solution vectors!

■ slow convergence, for low D only

[NM65] J.A. Nelder and R. Mead. A simplex method for function
minimization. The Computer Journal, 7(4):308–313, 1965.



Nelder-Mead Simplex Demo

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 21 / 40

Nelder-Mead downhill simplex algorithm:

■ Neighborhood is given by a set of operations applied to a set of points.

■ Neighborhood is adaptive due to changes in the set of points.

−3 −2.5 −2 −1.5 −1 −0.5 0

−0.5

0

0.5

1

1.5

Nelder−Mead Simplex Search on Sphere Function

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1

−0.5

0

0.5

1

1.5

2

2.5

Nelder−Mead Simplex Search on Rosenbrock Function



Lessons Learned

Course Introduction

Revision

Local Search

• Neighborhood

• Local search

• LS Demo

• Rosenbrock

• Rosenbrock demo

• Nelder-Mead

• NM demo

• Lessons Learned

• Escape from LO

• Taboo

• Stochastic HC

• SA

EAs

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 22 / 40

■ To search for the optimum, the algorithm must maintain at least one base solution (fullfiled
by all algorithms).

■ To adapt to the changing position in the environment during the search, the algorithm
must either

■ adapt the neighborhood (model) structure or parameters (as done in Rosenbrock
method), or

■ adapt more than 1 base solutions (as done in Nelder-Mead method), or

■ both of them.

■ The neighborhood

■ can be finite or infinite

■ can have a form of a pattern or a probabilistic distribution.

■ Candidate solutions can be generated from the neighborhood of

■ one base vector (LS, Rosenbrock), or

■ all base vectors (Nelder-Mead), or

■ some of the base vectors (requires selection operator).



The Problem of Local Optimum

Course Introduction

Revision

Local Search

• Neighborhood

• Local search

• LS Demo

• Rosenbrock

• Rosenbrock demo

• Nelder-Mead

• NM demo

• Lessons Learned

• Escape from LO

• Taboo

• Stochastic HC

• SA

EAs

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 23 / 40

All the above LS algorithms often get stuck in the neighborhood of a local optimum!

How to escape from local optimum?

1. Run the optimization algorithm from a different initial point.

■ restarting, iterated local search, . . .

2. Introduce memory and do not search in already visited places.

■ taboo search

3. Make the algorithm stochastic.

■ stochastic hill-climber, simulated annealing, evolutionary algorithms, swarm
intelligence, . . .

4. Perform the search in several places in the same time.

■ population-based optimization algorithms (Nelder-Mead, evolutionary
algorithms, swarm intelligence, . . . )



Taboo Search

Course Introduction

Revision

Local Search

• Neighborhood

• Local search

• LS Demo

• Rosenbrock

• Rosenbrock demo

• Nelder-Mead

• NM demo

• Lessons Learned

• Escape from LO

• Taboo

• Stochastic HC

• SA

EAs

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 24 / 40

Algorithm 5: Taboo Search

1 begin
2 x← Initialize()

3 y← x
4 M← ∅

5 while not TerminationCondition() do
6 y← BestOfNeighborhood(N(y, d)−M)

7 M← UpdateMemory(M, y)
8 if BetterThan(y, x) then
9 x← y

Meaning of symbols:

■ M — memory holding already visited points that become taboo.

■ N(y, d)−M — set of states which would arise by taking back some of the previous
decisions

Features:

■ The canonical version of TS is based on LS with best-improving strategy.

■ First-improving can be used as well.

■ It is difficult to use in real domain, usable mainly in discrete spaces.



Stochastic Hill-Climber

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 25 / 40

Assuming minimization:

Algorithm 6: Stochastic Hill-Climber

1 begin
2 x← Initialize()

3 while not TerminationCondition() do
4 y← Perturb(x)

5 p = 1

1+e
f (y)− f (x)

T

6 if rand() ≤ p then
7 x← y

Features:

■ It is possible to move to a worse point
anytime.

■ T is the algorithm parameter and stays
constant during the whole run.

■ When T is low, we get local search with
first-improving strategy

■ When T is high, we get random search



Stochastic Hill-Climber

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 25 / 40

Assuming minimization:

Algorithm 6: Stochastic Hill-Climber

1 begin
2 x← Initialize()

3 while not TerminationCondition() do
4 y← Perturb(x)

5 p = 1

1+e
f (y)− f (x)

T

6 if rand() ≤ p then
7 x← y

Features:

■ It is possible to move to a worse point
anytime.

■ T is the algorithm parameter and stays
constant during the whole run.

■ When T is low, we get local search with
first-improving strategy

■ When T is high, we get random search

Probability of accepting a new point y when
f (y)− f (x) = −13:

T e−
13
T p

1 0.000 1.000
5 0.074 0.931

10 0.273 0.786
20 0.522 0.657
50 0.771 0.565

1010 1.000 0.500

Probability of accepting a new point y when
T = 10:

f (y)− f (x) e
f (y)− f (x)

10 p

-27 0.067 0.937
-7 0.497 0.668
0 1.000 0.500

13 3.669 0.214
43 73.700 0.013



Simulated Annealing

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 26 / 40

Algorithm 7: Simulated Annealing

1 begin
2 x← Initialize()

3 T ← Initialize()

4 while not TerminationCondition() do
5 y← Perturb(x)
6 if BetterThan(y,x) then
7 x← y

8 else

9 p = e−
f (y)− f (x)

T

10 if rand() < p then
11 x← y

12 if InterruptCondition() then
13 T ← Cool(T)



Simulated Annealing

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 26 / 40

Algorithm 7: Simulated Annealing

1 begin
2 x← Initialize()

3 T ← Initialize()

4 while not TerminationCondition() do
5 y← Perturb(x)
6 if BetterThan(y,x) then
7 x← y

8 else

9 p = e−
f (y)− f (x)

T

10 if rand() < p then
11 x← y

12 if InterruptCondition() then
13 T ← Cool(T)

Very similar to stochastic hill-climber

Main differences:

■ If the new point y is better, it is always
accepted.

■ Function Cool(T) is the cooling schedule.

■ SA changes the value of T during the run:

■ T is high at beginning: SA behaves like
random search

■ T is low at the end: SA behaves like
deterministic hill-climber



Simulated Annealing

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 26 / 40

Algorithm 7: Simulated Annealing

1 begin
2 x← Initialize()

3 T ← Initialize()

4 while not TerminationCondition() do
5 y← Perturb(x)
6 if BetterThan(y,x) then
7 x← y

8 else

9 p = e−
f (y)− f (x)

T

10 if rand() < p then
11 x← y

12 if InterruptCondition() then
13 T ← Cool(T)

Very similar to stochastic hill-climber

Main differences:

■ If the new point y is better, it is always
accepted.

■ Function Cool(T) is the cooling schedule.

■ SA changes the value of T during the run:

■ T is high at beginning: SA behaves like
random search

■ T is low at the end: SA behaves like
deterministic hill-climber

Issues:

■ How to set up the initial tempereature T and the cooling schedule Cool(T)?

■ How to set up the interrupt and termination condition?



Evolutionary Optimization Algorithms

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 27 / 40



Evolutionary Algorithms

Course Introduction

Revision

Local Search

EAs

• EAs

• Biology

• Cycle

• Algorithm

• Initialization

• Selection

•Mutation

• Crossover

• Replacement

•Why EAs?

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 28 / 40

Evolutionary algorithms

■ are population-based counterpart of single-state local search methods (more robust
w.r.t. getting stuck in LO).

■ Inspired by

■ Mendel’s theory of inheritance (transfer of traits from parents to children), and

■ Darwin’s theory of evolution (random changes of individuals, and survival of
the fittest).



Evolutionary Algorithms

Course Introduction

Revision

Local Search

EAs

• EAs

• Biology

• Cycle

• Algorithm

• Initialization

• Selection

•Mutation

• Crossover

• Replacement

•Why EAs?

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 28 / 40

Evolutionary algorithms

■ are population-based counterpart of single-state local search methods (more robust
w.r.t. getting stuck in LO).

■ Inspired by

■ Mendel’s theory of inheritance (transfer of traits from parents to children), and

■ Darwin’s theory of evolution (random changes of individuals, and survival of
the fittest).

Difference from a mere parallel hill-climber: candidate solutions affect the search of other
candidates.



Evolutionary Algorithms

Course Introduction

Revision

Local Search

EAs

• EAs

• Biology

• Cycle

• Algorithm

• Initialization

• Selection

•Mutation

• Crossover

• Replacement

•Why EAs?

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 28 / 40

Evolutionary algorithms

■ are population-based counterpart of single-state local search methods (more robust
w.r.t. getting stuck in LO).

■ Inspired by

■ Mendel’s theory of inheritance (transfer of traits from parents to children), and

■ Darwin’s theory of evolution (random changes of individuals, and survival of
the fittest).

Difference from a mere parallel hill-climber: candidate solutions affect the search of other
candidates.

Originally, several distinct kinds of EAs existed:

■ Evolutionary programming, EP (Fogel, 1966): real numbers, state automatons

■ Evolutionary strategies, ES (Rechenberg, Schwefel, 1973): real numbers

■ Genetic algorithms, GA (Holland, 1975): binary or finite discrete representation

■ Genetic programming, GP (Cramer, Koza, 1989): trees, programs

Currently, the focus is on emphasizing what they have in common, and on exchange of
ideas among them.



Inspiration by biology

Course Introduction

Revision

Local Search

EAs

• EAs

• Biology

• Cycle

• Algorithm

• Initialization

• Selection

•Mutation

• Crossover

• Replacement

•Why EAs?

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 29 / 40

individual a candidate solution
fitness quality of an individual

fitness function (landscape) objective function
population a set of candidate solutions

selection picking individuals based on their fitness
parents individuals chosen by selection as sources of genetic

material
children (offspring) new individuals created by breeding

breeding the process of creating children from a population of
parents

mutation perturbation of an individual; asexual breeding
recombination or crossover producing one or more children from two or more pa-

rents; sexual breeding
genotype an individual’s data structure as used during breeding

phenotype the meaning of genotype, how is the genotype inter-
preted by the fitness function

chromosome a special type of genotype – fixed-length vector
gene a variable or a set of variables in the genotype
allele a particular value of gene

generation one cycle of fitness assessment, breeding, and replace-
ment



Evolutionary cycle

Course Introduction

Revision

Local Search

EAs

• EAs

• Biology

• Cycle

• Algorithm

• Initialization

• Selection

•Mutation

• Crossover

• Replacement

•Why EAs?

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 30 / 40

Population

Parents

Offspring

Selection

Crossover

Evaluation

Replacement

Mutation

Initialization

Evaluation



Algorithm

Course Introduction

Revision

Local Search

EAs

• EAs

• Biology

• Cycle

• Algorithm

• Initialization

• Selection

•Mutation

• Crossover

• Replacement

•Why EAs?

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 31 / 40

Algorithm 8: Evolutionary Algorithm

1 begin
2 X ← InitializePopulation()

3 f ← Evaluate(X)

4 xBSF , fBSF ← UpdateBSF(X, f)
5 while not TerminationCondition() do
6 XN ← Breed(X, f) // using certain breeding pipeline

7 fN ← Evaluate(XN)

8 xBSF , fBSF ← UpdateBSF(XN , fN)

9 X, f ← Join(X, f , XN , fN) // aka ‘‘replacement strategy’’

10 return xBSF , fBSF

BSF : Best So Far



Algorithm

Course Introduction

Revision

Local Search

EAs

• EAs

• Biology

• Cycle

• Algorithm

• Initialization

• Selection

•Mutation

• Crossover

• Replacement

•Why EAs?

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 31 / 40

Algorithm 8: Evolutionary Algorithm

1 begin
2 X ← InitializePopulation()

3 f ← Evaluate(X)

4 xBSF , fBSF ← UpdateBSF(X, f)
5 while not TerminationCondition() do
6 XN ← Breed(X, f) // using certain breeding pipeline

7 fN ← Evaluate(XN)

8 xBSF , fBSF ← UpdateBSF(XN , fN)

9 X, f ← Join(X, f , XN , fN) // aka ‘‘replacement strategy’’

10 return xBSF , fBSF

BSF : Best So Far

Algorithm 9: Canonical GA Breeding Pipeline

1 begin
2 XS ← SelectParents(X, f)
3 XN ← Crossover(XS)

4 XN ← Mutate(XN)

5 return XN

Other different Breed() pipelines can be pluged in the EA.



Initialization

Course Introduction

Revision

Local Search

EAs

• EAs

• Biology

• Cycle

• Algorithm

• Initialization

• Selection

•Mutation

• Crossover

• Replacement

•Why EAs?

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 32 / 40

Initialization is a process of creating individuals from which the search shall start.

■ Random:

■ No prior knowledge about the characteristics of the final solution.

■ No part of the search space is preferred.

■ Informed:

■ Requires prior knowledge about where in the search space the solution can be.

■ You can directly seed (part of) the population by solutions you already have.

■ It can make the computation faster, but it can unrecoverably direct the EA to a
suboptimal solution!

■ Pre-optimization:

■ (Some of) the population members can be set to the results of several (probably
short) runs of other optimization algorithms.



Selection

Course Introduction

Revision

Local Search

EAs

• EAs

• Biology

• Cycle

• Algorithm

• Initialization

• Selection

•Mutation

• Crossover

• Replacement

•Why EAs?

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 33 / 40

Selection is the process of choosing which population members shall become parents.

■ Usually, the better the individual, the higher chance of being chosen.

■ A single individual may be chosen more than once; better individuals influence more
children.



Selection

Course Introduction

Revision

Local Search

EAs

• EAs

• Biology

• Cycle

• Algorithm

• Initialization

• Selection

•Mutation

• Crossover

• Replacement

•Why EAs?

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 33 / 40

Selection is the process of choosing which population members shall become parents.

■ Usually, the better the individual, the higher chance of being chosen.

■ A single individual may be chosen more than once; better individuals influence more
children.

Selection types:

■ No selection: all population members become parents.

■ Truncation selection: the best n % of the population become parents.

■ Tournament selection: the set of parents is composed of the winners of small
tournaments (choose n individuals uniformly, and pass the best of them as one of the
parent).

■ Uniform selection: each population member has the same chance of becoming a
parent.

■ Fitness-proportional selection: the probability of being chosen is proportional to the
individual’s fitness.

■ Rank-based selection: the probability of being chosen is proportional to the rank of
the individual in population (when sorted by fitness).

■ . . .



Mutation

Course Introduction

Revision

Local Search

EAs

• EAs

• Biology

• Cycle

• Algorithm

• Initialization

• Selection

•Mutation

• Crossover

• Replacement

•Why EAs?

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 34 / 40

Mutation makes small changes to the population members (usually, it iteratively applies
perturbation to each individual). It

■ promotes the population diversity,

■ minimizes the chance of loosing a useful part of genetic code, and

■ performs a local search around individuals.



Mutation

Course Introduction

Revision

Local Search

EAs

• EAs

• Biology

• Cycle

• Algorithm

• Initialization

• Selection

•Mutation

• Crossover

• Replacement

•Why EAs?

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 34 / 40

Mutation makes small changes to the population members (usually, it iteratively applies
perturbation to each individual). It

■ promotes the population diversity,

■ minimizes the chance of loosing a useful part of genetic code, and

■ performs a local search around individuals.

Selection + mutation:

■ Even this mere combination may be a powerfull optimizer.

■ It differs from several local optimizers run in parallel.



Mutation

Course Introduction

Revision

Local Search

EAs

• EAs

• Biology

• Cycle

• Algorithm

• Initialization

• Selection

•Mutation

• Crossover

• Replacement

•Why EAs?

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 34 / 40

Mutation makes small changes to the population members (usually, it iteratively applies
perturbation to each individual). It

■ promotes the population diversity,

■ minimizes the chance of loosing a useful part of genetic code, and

■ performs a local search around individuals.

Selection + mutation:

■ Even this mere combination may be a powerfull optimizer.

■ It differs from several local optimizers run in parallel.

Types of mutation:

■ For binary representations: bit-flip mutation

■ For vectors of real numbers: Gaussian mutation, . . .

■ For permutations: 1-opt, 2-opt, . . .

■ . . .



Crossover

Course Introduction

Revision

Local Search

EAs

• EAs

• Biology

• Cycle

• Algorithm

• Initialization

• Selection

•Mutation

• Crossover

• Replacement

•Why EAs?

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 35 / 40

Crossover (xover) combines the traits of 2 or more chosen parents.

■ Hypothesis: by combining features of 2 (or more) good individuals we can maybe get
even better solution.

■ Crossover usually creates children in unexplored parts of the search space, i.e.,
promotes diversity.



Crossover

Course Introduction

Revision

Local Search

EAs

• EAs

• Biology

• Cycle

• Algorithm

• Initialization

• Selection

•Mutation

• Crossover

• Replacement

•Why EAs?

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 35 / 40

Crossover (xover) combines the traits of 2 or more chosen parents.

■ Hypothesis: by combining features of 2 (or more) good individuals we can maybe get
even better solution.

■ Crossover usually creates children in unexplored parts of the search space, i.e.,
promotes diversity.

Types of crossover:

■ For vector representations: 1-point, 2-point, uniform

■ For vectors of real numbers: geometric xover, simulated binary xover, parent-centric
xover, . . .

■ For permutations: partially matched xover, edge-recombination xover, . . .

■ . . .



Replacement

Course Introduction

Revision

Local Search

EAs

• EAs

• Biology

• Cycle

• Algorithm

• Initialization

• Selection

•Mutation

• Crossover

• Replacement

•Why EAs?

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 36 / 40

Replacement strategy (the join() operation) implements the survival of the fittest
principle. It determines which of the members of the old population and which new
children shall survive to the next generation.
Types of replacement strategies:

■ Generational: the old population is thrown away, new population is chosen just from
the children.

■ Steady-state: members of the old population may survive to the next generation,
together with some children.

■ Similar principles as for selection can be applied.



Why EAs?

Course Introduction

Revision

Local Search

EAs

• EAs

• Biology

• Cycle

• Algorithm

• Initialization

• Selection

•Mutation

• Crossover

• Replacement

•Why EAs?

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 37 / 40

EAs are popular because they are

■ easy to implement,

■ robust w.r.t. problem formulations, and

■ less likely to end up in a local optimum.



Why EAs?

Course Introduction

Revision

Local Search

EAs

• EAs

• Biology

• Cycle

• Algorithm

• Initialization

• Selection

•Mutation

• Crossover

• Replacement

•Why EAs?

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 37 / 40

EAs are popular because they are

■ easy to implement,

■ robust w.r.t. problem formulations, and

■ less likely to end up in a local optimum.

Some of the application areas:

■ automated control

■ planning

■ scheduling

■ resource allocation

■ design and tuning of neural networks

■ signal and image processing

■ marketing

■ . . .



Why EAs?

Course Introduction

Revision

Local Search

EAs

• EAs

• Biology

• Cycle

• Algorithm

• Initialization

• Selection

•Mutation

• Crossover

• Replacement

•Why EAs?

Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 37 / 40

EAs are popular because they are

■ easy to implement,

■ robust w.r.t. problem formulations, and

■ less likely to end up in a local optimum.

Some of the application areas:

■ automated control

■ planning

■ scheduling

■ resource allocation

■ design and tuning of neural networks

■ signal and image processing

■ marketing

■ . . .

Evolutionary algorithms are best applied in areas where we have no idea about the final solution.
Then we are often surprised what they come up with.



Summary

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 38 / 40



Learning outcomes: Prerequisities

Course Introduction

Revision

Local Search

EAs

Summary

• Learning outcomes:
Prerequisities

• Learning outcomes:
This lecture

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 39 / 40

Before entering this course, a student shall be able to

■ define an optimization task in mathematical terms; explain the notions of search
space, objective function, constraints, etc.; and provide examples of optimization
tasks;

■ describe various subclasses of optimization tasks and their characteristics;

■ define exact methods, heuristics, and their differences;

■ explain differences between constructive and generative algorithms and give
examples of both.



Learning outcomes: This lecture

Course Introduction

Revision

Local Search

EAs

Summary

• Learning outcomes:
Prerequisities

• Learning outcomes:
This lecture

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 40 / 40

After this lecture, a student shall be able to

■ describe and explain what makes real-world search and optimization problems hard;

■ describe black-box optimization and the limitations it imposes on optimization
algorithms;

■ define a neighborhood and explain its importance to local search methods;

■ describe a hill-climbing algorithm in the form of pseudocode; and implement it in a
chosen programming language;

■ explain the difference between best-improving and first-improving strategy; and
describe differences in the behaviour of the resulting algorithm;

■ enumerate and explain the methods for increasing the chances to find the global
optimum;

■ explain the main difference between single-state and population-based methods; and
name the benefits of using a population;

■ describe a simple EA and its main components; and implement it in a chosen
programming language.


	Course Introduction
	Course

	Revision
	Questions
	Optimization
	Representation
	Problem features
	Taxonomy
	BBO
	Algorithm features
	Algorithms

	Local Search
	Neighborhood
	Local search
	Rosenbrock
	Rosenbrock demo
	Nelder-Mead
	NM demo
	Lessons Learned
	Escape from LO
	Taboo
	SA

	EAs
	EAs
	Biology
	Cycle
	Algorithm
	Initialization
	Selection
	Mutation
	Crossover
	Replacement
	Why EAs?

	Summary
	Learning outcomes: Prerequisities
	Learning outcomes: This lecture


	pdclock.61: 
	pdclock.60: 
	pdclock.59: 
	pdclock.58: 
	pdclock.57: 
	pdclock.56: 
	pdclock.55: 
	pdclock.54: 
	pdclock.53: 
	pdclock.52: 
	pdclock.51: 
	pdclock.50: 
	pdclock.49: 
	pdclock.48: 
	pdclock.47: 
	pdclock.46: 
	pdclock.45: 
	pdclock.44: 
	pdclock.43: 
	pdclock.42: 
	pdclock.41: 
	pdclock.40: 
	pdclock.39: 
	pdclock.38: 
	pdclock.37: 
	pdclock.36: 
	pdclock.35: 
	pdclock.34: 
	pdclock.33: 
	pdclock.32: 
	pdclock.31: 
	pdclock.30: 
	pdclock.29: 
	pdclock.28: 
	pdclock.27: 
	pdclock.26: 
	pdclock.25: 
	pdclock.24: 
	pdclock.23: 
	pdclock.22: 
	pdclock.21: 
	pdclock.20: 
	pdclock.19: 
	pdclock.18: 
	pdclock.17: 
	pdclock.16: 
	pdclock.15: 
	pdclock.14: 
	pdclock.13: 
	pdclock.12: 
	pdclock.11: 
	pdclock.10: 
	pdclock.9: 
	pdclock.8: 
	pdclock.7: 
	pdclock.6: 
	pdclock.5: 
	pdclock.4: 
	pdclock.3: 
	pdclock.2: 
	pdclock.1: 
	pdclock.0: 


