
Parameter Tuning.

Automatic Algorithm Configuration

Petr Pošı́k

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Cybernetics

Using some slides from Jiřı́ Kubalı́k, CIIRC CTU, with permission.

Motivation 2
Algorithm config. 3
Approaches . 4
AAC Contributions . 5
AAC Problem . 6
Problem features. 7
How to. 8

Racing 9
Brute vs. Racing . 10
F-Race . 11
F-Race: Algorithm . 12
Iterated racing . 13

Iterated LS 14
ParamILS . 15
ILS Algorithm . 16
Basic Acceptance. 17
FocusedILS . 18
Focused Acceptance . 19
Quiz . 21
Adaptive Capping . 22
ParamILS: Remarks . 23

Model-based methods 24
AAC with surrogate . 25
Gaussian Processes. 26
Quiz . 27
Optimization w. GP . 28
Acquisition function. 29
Bayesian Opt. 31
SMAC . 32

AutoML 33
AutoML . 34
Auto-sklearn . 35

Summary 36
Conclusions . 37
Learning outcomes . 38

1

Motivation 2 / 38

Configurable algorithms

Many algorithms for computationally hard problems (not only for optimization) have a number of tunable meta-parameters
affecting their performance:

■ Local search: neighborhoods, perturbations, tabu length, annealing, . . .

■ EAs: population size, mating scheme, recombination operators, crossover and mutation rates, local improvement stages, . . .

■ Tree search (esp. for SAT): pre-processing, branching strategies, restarts, data structures,. . .

■ Machine-learning pipelines: preprocessing method, model type, regularization, learning rate schedules, optimizers & their
params, . . .

■ Deep learning: #layers and their types, #units/layer, dropout settings, weight initialization and decay, pre-training, . . .

Which of the following statements about algorithm configuration is mostly false?

A There is no single optimal setting for all possible applications.

B For iterative algorithms, the optimal setting also depends on the number of iterations already performed.

C Metaparameters allow us to tune the algorithm to the problem class at hand.

D Practitioners heavily tune their algorithms before applying them to their problems.

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 3 / 38

Approaches to algorithm configuration

Online parameter control: the configuration is adapted during the optimization run.

■ 1/5th rule in ES

■ Adaptive penalty coefficients in constrained optimization

■ Population sizing in Parameter-less GA

■ . . .

Offline parameter tuning or Automatic algorithm configuration, AAC: a configuration is found for certain class of problem
instances before the algorithm is applied to new ones.

■ The topic of this lecture.

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 4 / 38

2

Contributions of automatic algorithm configuration

Development of complex algorithms:

■ Algorithm configuration is a labour- and time-intensive task.

■ AAC trades costly human time for cheap CPU time.

■ AAC methods can lead to significant time savings and potentially achieve better results than manual, ad-hoc tuning methods.

Empirical studies, evaluations, and comparisons of algorithms:

■ The majority of existing comparisons of heuristic algorithms are questionable: the algorithms are used with their default
settings.

■ Not clear whether the superiority of one algorithm is not caused just by a more suitable configuration for a particular problem
class.

■ AAC methods can provide fair comparisons and thus facilitate more meaningful comparative studies.

Practical use of algorithms:

■ Algorithms are often applied in contexts that were not envisioned by the algorithm designers.

■ End users often use the default settings (no knowledge of the impact of the algorithm configuration on its performance).

■ AAC methods can be used to improve performance in a principled and convenient way.

■ AAC can ”modify” the algorithm for a different than original objective (speed, accuracy, memory, energy consumption, latency,
. . .)

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 5 / 38

Algorithm configuration problem

Find a good static configuration of solver before applying the solver on a problem at hand.

■ I: the set of problem instances representing certain problem class (can be given by a distribution PI over admissible instances, or
by a problem generator).

■ S: a solver (suitable for problem class I) with parameters θ = (p1, . . . , pk) ∈ Θ that affect its performance. S(θ) is the instance of
the solver S configured with θ.

■ Θ: a set of all possible configurations, i.e., all possible combinations of values of pi.

■ C(θ, i, t) = C(S(θ), i, t): assigns a cost value to each configuration θ when running S(θ) on instance i ∈ I for time t. It is often a
random variable and we observe its realizations. c(θ, i, t) ∼ PC(c|θ, i, t).

■ The problem: find configuration θ∗ ∈ Θ such that S(θ) yields the best utility u, i.e.

θ∗ = arg max
θ∈Θ

u(θ), where u(θ) = f (θ|I, PI , PC, t).

Solver
solves

solu�on quality

Problem instance k

Problem instance 2

Problem instance 1

Set of problem instances I

Problem solving

Tuner

tunes

Sta�s�cs of
problem solving process

solver/configura�on
u�lity

The process resembles ordinary ML process: fit algorithm (solver S) to the training data (instances I).

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 6 / 38

3

Characteristics of a configuration problem

Why is the tuning problem a complex optimization task?

■ The cost function is often stochastic, either due to the stochasticity of the target problem class, or due to the stochasticity of the
solver itself.

■ The measurements of the cost function are expensive: one has to execute the problem solving subtask many times, and such a
process is time consuming.

■ The tuner usually has only a limited budget in terms of candidate solver configuration trials.

■ The individual parameters pi are of different types (nominal, ordinal, real-valued).

■ The parameters are often hierarchically structured, i.e. some parameters are relevant only when other parameters are set to some
particular value(s).

■ Parameters are generally not independent!

The cost of a single run for certain configuration θ may represent

■ the computational resources consumed by the given algorithm (runtime, memory, communication bandwith, . . .),

■ the approximation error,

■ the improvement achieved over an instance-specific reference cost,

■ the quality of the solution found.

The utility of a configuration θ (cost aggregated across many runs) is a function of

■ the (negative) expected cost,

■ the (negative) median cost, . . .

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 7 / 38

How to solve the configuration problem?

Manual methods:

■ Grid search:

■ All parameters discretized, all combinations evaluated on all training instances, the best is selected.

■ Only limited number of configurations can be tried.

■ Manually executed local search:

■ Researchers often tune parameters one by one, with a single small modification at a time.

■ More configurations can be tried, but many arbitrary choices are done.

Automated methods:

■ Classical black-box optimizers when all parameters are real-valued: CMA-ES, BOBYQA, MADS, . . .

■ Systematic sampling: Methods from Design of Experiments, latin hypercubes, quasi-random numbers, . . .

■ Evolutionary approches: Meta-GA, REVAC, EVOCA

■ Racing methods: F-Race, irace

■ Iterated local search: ParamILS

■ Model-based approaches: SPOT, SMAC, Spearmint (Bayesian optimization)

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 8 / 38

4

Racing 9 / 38

Brute force vs Racing

Brute force approach

■ Estimate the quantities PC and PI by means of a sufficiently large number of runs of each candidate configuration on a
sufficiently large set of training instances.

■ The training set must be defined prior to the computation – how large?

■ How many runs of each configuration on each instance should be performed?

■ The same computational resources are allocated to each configuration – wasting time on poor configs!

Racing algorithm

■ Provides a better allocation of computational resources among candidate configurations.

■ No need to fix the number of instances and/or the number of runs for each configuration.

■ Sequentially evaluates candidate configs and discards poor ones as soon as statistically sufficient evidence is gathered against
them.

■ Elimination of the inferior candidates speeds up the
procedure and allows to evaluate the promising ones on
more instances.

■ As the evaluation proceeds, the race focuses more and
more on the promising configurations.

Instances
(time)

C
o
n

�

g
u
ra
ti
o
n
s

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 10 / 38

F-Race

F-Race [BSPV02] is a particular racing procedure:

■ The process starts with a given finite pool of candidate configurations Θ0 ⊂ Θ.

■ Candidates are eliminated as soon as they become inferior to at least one other candidate. The decision is based on Friedman
test.

■ Applied to repetitive problems where many similar instances are available or appear over time.

Notation:

■ k is the current step of the race process, n = |Θk−1| configurations are still in the race.

■ i = (ik)
K
k=1 is a random sequence of training instances. Instance ik is drawn from PI independently for each k.

■ c
k(θ, i) is an array of k terms c(θ, il) for l ∈ 1, . . . , k.

■ c(θ, il) is the cost of the best solution found by configuration θ on instance il).

■ For a given θ, the array c
k can be obtained from c

k−1 by appending the cost c(θ, ik) on the current instance ik.

■ A block is n-variate random variable (c(θ1, il), c(θ2, il), . . . , c(θn, il)) that corresponds to the results on instance il for each
configuration still in the race at step k.

[BSPV02] Mauro Birattari, Thomas Stützle, Luis Paquete, and Klaus Varrentrapp. A racing algorithm for configuring metaheuristics. In Proceedings of the 4th Annual Conference on Genetic and Evolutionary
Computation, GECCO’02, page 11–18, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 11 / 38

5

F-Race: Algorithm

F-Race generates a sequence Θ0 ⊇ Θ1 ⊇ Θ2 ⊇ . . ., and the step from Θk−1 to Θk is done as follows:

1. At step k, sample a new instance ik ∼ PI .

2. Take each candidate θ ∈ Θk−1 still in the race, execute it on ik and append the observed cost c(θ, ik) to already known costs on

previous instances c
k−1(θ, i).

3. Compare the results of all n configurations on all k instances using a statistical test.

■ Use non-parametric Friedman repeated measures analysis of variance by ranks.

■ The null hypothesis is that all configurations are equally good, i.e., all possible rankings of the candidates within each block
are equally likely.

4. Are there significant differences? (Is the null hypothesis is rejected?)

■ Yes, there are differences: Perform pairwise comparisons between the best candidate and each other candidate using the
t-test. All candidates significantly worse than the best one are discarded, Θk ⊂ Θk−1.

■ No, no significant differences: Θk = Θk−1.

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 12 / 38

Iterated racing

F-Race is not suitable for applications with large configuration spaces.

■ Need to specify candidate configurations before the race.

■ High number of configurations: F-Race takes a lot of time.

■ Low number of configurations: low confidence in the result.

■ Used mainly for configuration problems with a few parameters with small domains.

Iterated F-Race [BYBS10] is a generalization of F-race (a variant of Estimation-of-distribution algorithm):

1. Sample new configurations according to the current distribution PC.

2. Select the best configurations from the newly sampled ones by means of F-Race.

3. Update the sampling distribution PC (add bias towards the best configurations).

4. Repeat until budget not exhausted.

Remarks:

■ The individual F-Races do not have to run until only a single configuration remains (can be stopped sooner).

■ Individual F-Races may be relatively small (because more runs with different set of candidates are expected).

[BYBS10] Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Stützle. F-Race and Iterated F-Race: An Overview, pages 311–336. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 13 / 38

6

Iterated Local Search 14 / 38

ParamILS

ParamILS [HHLBS09]: Iterated Local Search in parameter space

■ Uses iterated, not restarted, local search:

■ Restarted: restart the local search from a new uniformly chosen starting point.

■ Iterated: apply a large(r) perturbation to the current solution to get a new starting point (i.e., kick the candidate solution out
of a local optimum).

■ ILS builds a chain of local optima by iterating the following steps:

1. Perturb a solution to escape from local optimum.

2. Apply local search to get to a (hopefully different) local optimum.

3. Decide whether to keep or reject the new local optimum (acceptance criterion).

ParamILS(θ0, r, prestart, s)

■ Assumes discrete parameters (continuous params must be discretized).

■ Initialization uses one given configuration θ0 and r randomly chosen configurations.

■ Uses one-exchange neighborhood, i.e., perturbation in local search is done by exchanging value for a single parameter.

■ Employs iterative first-improvement LS.

■ Uses s random moves for the ”large” perturbation (kicking out from LO).

■ Always accepts better or equally good configurations.

■ Re-initializes the search at random with probability prestart.

[HHLBS09] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle. Paramils: An automatic algorithm configuration framework. J. Artif. Int. Res., 36(1):267–306, sep 2009.

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 15 / 38

ParamILS Algorithm

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 16 / 38

7

Basic acceptance criterion

Basic variant of ParamILS, BasicILS, uses criterion betterN(θ1, θ2):

■ Configurations θ1 and θ2 are compared using their cost approximations ĉN(θ1) and ĉN(θ2).

■ Cost approximation ĉN(θ) is based on exactly N samples from the respective cost distribution C(θ, PI). The same N instances
are used for all configurations θi.

■ It also updates the best-so-far solution, θinc.

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 17 / 38

FocusedILS

BasicILS: How to choose the optimal number of training instances, N?

■ Too small N leads to good training performance, but poor generalization to previously unseen test benchmarks.

■ On the other hand, we cannot evaluate every configuration on a big training set (slow progress).

FocusedILS is a variant of ParamILS that adaptively varies the number of training samples used for individual configurations to focus
on promising configurations.

■ N(θ) denotes the number of runs available to estimate the cost statistic c(θ).

How to compare configurations θ1 and θ2 for which N(θ1) 6= N(θ2)?

■ What if we computed the empirical statistics based on the available number of runs for each configuration?

■ Can lead to systematic bias if, for example, the first instances are easier than the average ones.

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 18 / 38

8

Focused Acceptance Criterion

Domination: Configuration θ1 dominates θ2 when at least as many runs have been conducted on θ1 as on θ2, and the performance of
S(θ1) on the first N(θ2) runs is at least as good as that of S(θ2) on all of its runs.

θ1 dominates θ2 if and only if N(θ1) ≥ N(θ2) and ĉN(θ2)
(θ1) ≤ ĉN(θ2)

(θ2).

FocusedILS uses procedure betterFoc(θ1, θ2) which implements a domination-based comparison.

1. Acquire one additional run for the configuration θi with smaller N(θi), or one run for both configurations if N(θ1) = N(θ2).

2. Continue performing runs in this way until one configuration dominates the other.

3. Returns true if θ1 dominates θ2; false otherwise.

It keeps track of the number, B, of configurations evaluated since the last improving step:

■ Whenever betterFoc(θ1, θ2) returns true, perform B extra runs for θ1 , reset B to 0.

■ This ensures that many runs are performed with good configurations =⇒ the error made in every comparison of configurations
θ1 and θ2 decreases in expectation.

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 19 / 38

Focused Acceptance Criterion (cont.)

Function betterFoc(θ1, θ2)

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 20 / 38

9

Quiz

Assume the following situation:

■ We configure an algorithm that either optimally solves a problem instance, or proves that the instance is unsolvable.

■ Our goal is to minimize the algorithm runtime.

■ Configuration θ1 takes a total of 10 s to solve N = 100 instances (mean runtime is 0.1 s per instance).

■ Now we are assessing configuration θ2. It has been running for more than 10 s solving the first instance.

What is the right thing to do now?

A To make a fair comparison, we have to run S(θ2) on all 100 instances too.

B We can stop S(θ2) after it finishes solving the first instance.

C We can stop S(θ2) immediately.

D We should not have run S(θ2) at all; it was clear that it cannot be better than θ1 even without running it.

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 21 / 38

Adaptive Capping

Capping is a group of methods used in ParamILS to prevent wasting resources by evaluating configurations which are much worse
than other, previously seen configuration.

■ Using a bound on configuration performance, it preemptively stops evaluations of those configurations that cannot improve
current configuration.

■ Trajectory-preserving capping provably preserves ParamILS search trajectory, yet can lead to large computational savings.

■ Aggressive capping changes the behavior of ParamILS, but can provide even better performance.

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 22 / 38

10

ParamILS: Final Remarks

ParamILS is suitable for configuration problems with many parameters and huge configuration spaces.

Successful applications of ParamILS:

■ SPEAR, a complete SAT solver

■ 26 parameters,

■ 8.34 · 1017 possible configurations,

■ FocusedILS produced configurations that solved test problems about 100 times faster than previous state-of-the-art solvers.

■ CPLEX, a prominent solver for mixed integer programming problems with carefully chosen default parameter settings

■ 76 parameters,

■ 1.9 · 1047 possible configurations,

■ FocusedILS obtained substantial improvements in terms of both the time required to find optimal solutions (speedup
factors from 1.98 to 52.3) and minimizing the optimality gap with factors from 1.26 to 8.65.

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 23 / 38

Model-based methods 24 / 38

Algorithm configuration with surrogates

A surrogate model is a cheap (regression) model of the expensive function we want to optimize.

How can we use it for optimization or algorithm configuration?

■ We can use the data points sampled so far to build a (much cheaper) regression model of that function.

■ Then we find the optimum of the model:

■ either analytically, if the models allows, or

■ by applying numerical optimization to the model (evaluations of the model are cheap).

■ The best point (configuration) according to the model is then evaluated by the true, expensive utility function.

■ The evaluated point is added to the training set, the surrogate model is updated accordingly, and the process is repeated.

The above approach is too greedy:

■ Almost no emphasis on exploration, i.e. on learning a good model.

■ A good modeling method should allow to model not only the function itself, but also our uncertainty about the model values!

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 25 / 38

11

Gaussian Processes

Gaussian Process is a distribution over a family of functions.

■ For each point, it provides not only the estimate of the expected value at that point, but also an estimate of the prediction
variance.

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 26 / 38

12

Quiz

Assume we want to minimize a function. We have the following model:

Which of the points is the best candidate for the next sample?

A x1

B x2

C x3

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 27 / 38

13

Optimization with GP as a surrogate

Several steps of function maximization with GP as a model:

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 28 / 38

GP: Acquisition function

To determine where to sample the next configuration for evaluation by the expensive cost function, the algorithm must optimize the
(hopefully cheap) acquisition function:

■ Using another optimization solver (DIRECT, EA, CMA-ES, . . .).

■ The found “optimum” is just an approximation (which does not matter much since the model itself is only an approximation).

Types of acquisition functions:

■ Probability of improvement (PI): what is the probability that sampling at point θ will improve the cost function, given the
current GP model?

■ Expected improvement (EI): what is the expected “size” of the improvement at point θ, given the current GP model?

■ Upper confidence bound (UCB): UCBθ = µ(θ) + κσ(θ)

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 29 / 38

14

GP: Acquisition function (cont.)

The influence of various acquisition functions with different parameters:

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 30 / 38

Bayesian Optimization

General approach:

■ Fit a probabilistic model (e.g., Gaussian process, Random Forest, . . .) to the function samples collected so far.

■ Use the model to guide the optimization (combine exploration and exploitation in a reasonable way).

Advantages:

■ Based on sound principles.

■ Efficient in the number of function evaluations.

■ Works when objective isn non-convex, noisy, has known derivatives, etc.

Disadvatages:

■ The complexity of the model (e.g., in case of GP) quickly increases with the number of evaluated data points.

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 31 / 38

15

SMAC: Basic info

Sequential Model-based Algorithm Configuration, SMAC [HHLB11]:

■ The search is guided by a predictive model of algorithm performance.

■ Uses aggressive racing & adaptive capping.

A single iteration of SMAC:

■ Construct a model to predict performance.

■ Use the model to select promising configurations.

■ Compare each selected configuration against the best known (similar to FocusedILS).

[HHLB11] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for general algorithm configuration. In Carlos A. Coello Coello, editor, Learning and Intelligent
Optimization, pages 507–523, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 32 / 38

Automated Machine Learning 33 / 38

Automated Machine Learning

ML is successful in many applications.

■ But it still requires human ML experts to

■ preprocess the data,

■ select/create features,

■ select model family,

■ optimize hyperparameters,

■ construct ensembles,

■ . . .

■ AutoML takes the human expert out of the loop.

AutoML:

■ Introduced by Auto-WEKA [THHLB13]:

■ Expose the choices in ML framework (algorithms, hyperparameters, preprocessors, . . .)

■ Optimize crossvalidation performance using Bayesian optimization.

■ =⇒ A true push-button solution for machine learning!

[THHLB13] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-weka: Combined selection and hyperparameter optimization of classification algorithms. In Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’13, page 847–855, New York, NY, USA, 2013. Association for Computing Machinery.

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 34 / 38

16

Auto-sklearn

Auto-sklearn [FKE+15]:

■ Application of AutoWEKA principles to scikit-learn Python package.

■ Adding new components to AutoWEKA approach:

■ Meta-learning to warmstart Bayesian optimization.

■ Automated post-hoc ensemble construction combining the models evaluated by Bayesian optimization.

Source code: https://github.com/automl/auto-sklearn

Trivial usage:

>>> import autosklearn.classificaton as cls

>>> automl = cls.AutoSklearnClassifier()

>>> automl.fit(X train, y train)

>>> y hat = automl.predict(X test)

Similar solutions for other ML packages exist (Auto-Keras, Auto-PyTorch, . . .)

[FKE+15] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg, Manuel Blum, and Frank Hutter. Efficient and robust automated machine learning. In Proceedings of the 28th
International Conference on Neural Information Processing Systems - Volume 2, NIPS’15, page 2755–2763, Cambridge, MA, USA, 2015. MIT Press.

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 35 / 38

Summary 36 / 38

Conclusions

Automatic algorithm configuration is very useful:

■ Improves results, increases productivity.

■ Enables automated machine learning.

To use an AAC method, you need:

■ an algorithm with exposed parameters,

■ a training set of instances (or a generator of instances from certain distribution),

■ a performance metric you care about.

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 37 / 38

17

https://github.com/automl/auto-sklearn

Learning outcomes

After this lecture, a student shall be able to

■ identify metaparameters (tunable parameters) in various optimization tasks and distinguish them from decision variables;

■ explain the difference between parameter tuning and parameter control, and give examples of both;

■ define the task of parameter tuning;

■ explain the complex nature of the parameter tuning problem and describe characteristics that make it complex;

■ list several contributions of parameter tuning;

■ exemplify a few manual methods usable for parameter tuning, list their advantages and disadvantages;

■ describe and explain racing techniques, F-race and iterated racing, and its advanatges/disadvantages;

■ describe and explain ParamILS algorithm (how the local search is done, how the iteration of local search is done) + its
advantages/disadvantages;

■ explain the principle of using surrogate models in optimization and describe possible shortcommings;

■ describe Gaussian process and explains its difference to the majority of regular regression models;

■ explain the role of an acquisition function in Gaussian process-based optimization and list a few examples of acq. functions.

P. Pošı́k c© 2021 A0M33EOA: Evolutionary Optimization Algorithms – 38 / 38

18

	Motivation
	Configurable algorithms
	Approaches to algorithm configuration
	AAC Contributions
	Algorithm configuration problem
	Characteristics of a configuration problem
	How to solve the configuration problem?

	Racing
	Brute force vs Racing
	F-Race
	F-Race: Algorithm
	Iterated racing

	Iterated Local Search
	ParamILS
	ParamILS Algorithm
	Basic acceptance criterion
	FocusedILS
	Focused Acceptance Criterion
	Quiz
	Adaptive Capping
	ParamILS: Final Remarks

	Model-based methods
	AAC with surrogate
	Gaussian Processes
	Quiz
	Optimization with GP as a surrogate
	GP: Acquisition function
	GP: Acquisition function (cont.)
	Bayesian Optimization
	SMAC

	AutoML
	AutoML
	Auto-sklearn

	Summary
	Conclusions
	Learning outcomes

